

Progressive Rehabilitation and Closure Plan

Saraji South Mine (Norwich Park Mine)

Status: FINAL

Version: v3 (26 September 2025)

Business Owner: Saraji South Mine

Document ID BMA-SSM-PRCP-v3

Tenure Number(s)

ML1782 (part), ML70126, ML70127, ML70325, ML70328 (part), ML70350, ML70369, ML70370, ML70410

EA holder name

BHP COAL PTY LTD
QCT Management Pty Limited
Mitsubishi Development Pty Ltd
Umal Consolidated Pty Ltd
QCT MINING PTY. LTD.
QCT INVESTMENT PTY. LTD.
BHP Queensland Coal Investments Pty Ltd

EA holder contact details

Level 14, 480 Queen St, Brisbane, QLD 4000 GPO Box 1389, Brisbane QLD 4001

TABLE OF CONTENTS

ΙNΤ	RODU	JCTION	1
TR	ANSIT	TONAL PROVISIONS	1
Tı	ransition	al timeline	2
KN	OWLE	DGE BASE REFINEMENT	2
A :	REHA	BILITATION PLANNING	4
1	PROJ	ECT PLANNING	4
		pject description	
	1.1.1	Geographic location	
	1.1.2	Mining tenements	
	1.1.3	Primary mine features and infrastructure on-site	8
	1.1.4	Type of mining operation	g
	1.1.5	Proposed duration of the operation	g
1.	2 Bas	seline information	
	1.2.1	Site topography	11
	1.2.2	Climate	11
	1.2.3	Geological setting	12
	1.2.4	Site hydrology and fluvial networks	17
	1.2.5	Hydrogeology	23
	1.2.6	Soil types, properties and productivity	28
	1.2.7	Land stability	31
	1.2.8	Vegetation communities and ecological data	31
	1.2.9	Fauna presence and populations	35
	1.2.10	Pre-mining land use	39
	1.2.11	Contaminated land	39
	1.2.12	Underlying landholders	40
1.	3 De	sign for closure	42
1.	4 Re	habilitation and improvement planning	42
	1.4.1	Relevant activities requiring rehabilitation	42
	1.4.2	Rehabilitation areas and milestones	47
	1.4.3	Improvement areas and milestones	49
	1.4.4	Existing rehabilitation	49
	1.4.5	Availability for progressive rehabilitation	53
2	COM	MUNITY CONSULTATION	55
2.	1 Sta	keholders	55

	2.2	Consultation to date	56
	2.2	.1 Pre-PRCP consultation	56
	2.2	.2 Transitional PRCP consultation	56
	2.3	Community consultation plan	57
	2.3	.1 Objectives	57
	2.3	.2 Consultation process	57
	2.3	.3 Information to be provided	57
	2.3	.4 How feedback will be considered	59
	2.4	Community consultation register	59
	2.5	Feedback to date	59
3	PC	OST-MINING LAND USES	76
	3.1	Nominated PMLUs	76
	3.1	.1 Cattle grazing	78
	3.1	.2 Grassland	81
	3.1	.3 Woodland habitat	81
	3.1	.4 Watercourse	82
	3.1	.5 Dryland Cropping	83
	3.2	Community considerations	84
	3.3	Regional planning integration	85
4	NC	ON-USE MANAGEMENT AREAS	86
	4.1	Nominated NUMAs	87
	4.2	Minimising environmental harm	87
	4.3	Minimising NUMA area	89
	4.4	Community considerations	90
	4.5	Regional planning integration	90
5	VC	DIDS IN FLOOD PLAINS	91
	5.1	Background	91
	5.2	Relevant watercourses	91
	5.3	Voids in flood plains landform	92
	5.4	Modelling	92
	5.5	Results	92
6	RE	EHABILITATION AND MANAGEMENT METHODOLOGY	93
	6.1	General rehabilitation practices	93
	6.1	.1 Hydrogeology	93
	6.1		
	6.1	.3 Waste characterisation	106

	6.1.4	Soil and capping material	111
	6.1.5	Landform design	115
	6.1.6	Cover design	121
	6.1.7	Water management	122
	6.1.8	Revegetation	129
	6.2 Tail	ings storage facilities	141
	6.2.1	Tailings context	141
	6.2.2	Tailings characterisation	144
	6.2.3	Rehabilitation strategies	147
	6.3 Voi	ds	148
	6.3.1	Geotechnical stability	148
	6.3.2	Void hydrology	150
	6.3.3	Options for minimising final void	151
	6.3.4	Residual void dimensions and wall angles	152
	6.3.5	Improvement and management strategies	153
	6.4 Und	derground mining	156
	6.5 Buil	t infrastructure	156
	6.5.1	Built infrastructure	157
	6.5.2	Water infrastructure	158
	6.5.3	Contaminated land assessment	158
	6.6 Sur	nmary of key rehabilitation and management practices	159
7	RISK	ASSESSMENT	170
	7.1 Idei	ntifying, assessing and treating risks	170
	7.1.1	Risk methodology	170
	7.1.2	Risk identification	171
	7.1.3	Risk analysis, evaluation and relevant treatments	171
	7.2 Reh	nabilitation trials	185
8	MONI	TORING AND MAINTENANCE	186
	8.1 Ref	nabilitation monitoring	186
	8.1.1	Remote sensing and technology	188
	8.1.2	Erosion monitoring	188
	8.2 Cat	tle grazing, grassland and woodland habitat monitoring	
	8.2.1	Monitoring schedule	189
	8.2.2	Rehabilitation monitoring sites	
	8.2.3	General rehabilitation monitoring parameters	
	8.2.4	Cattle grazing specific rehabilitation parameters	

8.2	2.5	Grassland specific rehabilitation parameters	194
8.2	2.6	Woodland habitat specific rehabilitation parameters	194
8.3	Wa	atercourse monitoring	196
8.4	Re	eference Sites	198
8.4	l.1	Cattle grazing reference sites	198
8.4	1.2	Woodland habitat reference sites	200
8.4	1.3	Watercourse reference sites	203
8.5	Su	rface water monitoring	206
8.5	5.1	Rehabilitation area surface water monitoring	206
8.5	5.2	Receiving environment surface water monitoring	206
8.6	Gr	oundwater monitoring	209
8.6	3.1	Groundwater quality	209
8.6	5.2	Groundwater levels	209
8.6	6.3	Groundwater monitoring schedule	209
8.6	6.4	Groundwater monitoring locations	209
8.7	NU	JMA milestone monitoring	213
8.8	Ac	hievement schedule	213
8.8	3.1	PMLUs	213
8.8	3.2	NUMAs	214
8.9		ata analysis and reporting	
8.10	Ma	aintenance	215
8.11	Qι	uality assurance and quality control	215
9 RE	EFE	RENCES	216
B: PR	RCP	SCHEDULE	219
		CP SCHEDULE	
10.1	Fir	nal site design	219
10.2	Re	eference map	219
10.3	Sc	hedule Conditions	222
10.4	Re	ehabilitation milestones	222
10.5	Ma	anagement milestones	232
10.6		hedule	
C: AP	PE	NDICES	244
		A: Saraji South Mine Environmental Authority (EPML00865013) (29 June 20	
		B: DES (27 May 2021) – Progressive Rehabilitation and Closure Plan Trans	•
		IL00865013	

Appendix C: BHP (20 May 2021) – Progressive Rehabilitation and Closure Plan BMA NPM - D Pre-Notification Memo	DES 244
Appendix D: SLR (2024b) – Saraji South Mine Transitional PRC Plan Hydrogeology	244
Appendix E: SLR (2024c) – Saraji South Mine Groundwater Modelling Technical Report	244
Appendix F: Landloch (2023b) – Saraji South Mine Material Characterisation Study	244
Appendix G: Saraji South Mine Community Consultation Register	244
Appendix H: SLR (2024a) – Saraji South Mine Transitional PRCP Voids in Floodplain Assessment.	244
Appendix I: WMS (2024) – Saraji South Mine PRCP Rehabilitation Flood Modelling	244
Appendix J: BHP (2024) – Saraji South Mine PRCP Environmental Geochemical Characterisation and Risk Assessment of Mineral Waste	tion 244
Appendix K: Landloch (2024) – Erosion and Landform Evolution Simulations to Support Waste Landform Design: Saraji South Mine	e 244
Appendix L: Engeny (2024) – Concept Design Report Rolf Creek East	244
Appendix M: WSP (2024) – Norwich Park Mine Void Closure Plan	244
Appendix N: Saraji South Mine PRCP Risk Assessment	244

List of Figures

Figure 1: SSM location map	5
Figure 2: SSM mining tenements	7
Figure 3: SSM current site layout	10
Figure 4: Geological cross-sections – Campbell Pit	14
Figure 5: Geological cross-sections – Gilbert and Price Pits	15
Figure 6: Geological cross-sections – Leichhardt Pit	16
Figure 7: SSM Fluvial network and diversions	19
Figure 8: Conceptual site model of SSM at last day of mining (SLR, 2024b)	28
Figure 9: SSM soil mapping units - ASC	30
Figure 10: SSM Baseline regional ecosystems and environmentally sensitive areas	34
Figure 11: SSM baseline fauna habitat for mapping koala and greater glider	37
Figure 12: SSM baseline fauna habitat for ornamental snake, squatter pigeon and grey falcon	38
Figure 13: SSM land ownership	41
Figure 14: Roper area	46
Figure 15: Indicative dump progression during life-of-mine (illustrative purposes only)	53
Figure 16: SSM PMLUs and NUMAs	77
Figure 17: SSM post-mining conceptual site model (SLR, 2024a)	100
Figure 18: Conceptual 3D closure landform design	116
Figure 19: Typical riparian revegetation plantings zone (Vegetation Matters, 2014)	137
Figure 20: SSM tailings storage facilities	142
Figure 21: ISO 31000-compliant risk-based approach for the SSM PRCP	170
Figure 22: SSM cattle grazing and woodland habitat reference sites	199
Figure 23: SSM creek diversion monitoring locations	205
Figure 24: SSM rehabilitation surface water monitoring locations	208
Figure 25: SSM rehabilitation groundwater monitoring bores	212
Figure 26: Rehabilitation monitoring QA/QC process	215
Figure 27: SSM final site design	220
Figure 28: SSM reference map	221
List of Tables	
Table 1: SSM mining tenements	6
Table 2: Primary mine features and infrastructure at SSM	8
Table 3: Average monthly rainfall	12
Table 4: Surface water environmental values	17
Table 5: Watercourses and key drainage lines within and immediately surrounding SSM	18

Table 6: Water licences applicable to SSM	20
Table 7: Summary of upstream water quality results (2015 to 2021)*	21
Table 8: SSM groundwater environmental values	24
Table 9: Registered use of groundwater bores within SSM	26
Table 10: SSM baseline soil types	28
Table 11: Summary of chemical properties of undisturbed SSM soil types (0 - 0.3m)	29
Table 12: Ground-truthed regional ecosystems recorded during baseline assessments at SSM	32
Table 13: Relevant activities requiring rehabilitation at SSM	42
Table 14: Rehabilitation areas and relevant activities for SSM	47
Table 15: Rehabilitation milestones for SSM	48
Table 16: Improvement areas and relevant activities for SSM	49
Table 17: Management milestones for SSM	49
Table 18: Progression of existing rehabilitation to the next rehabilitation milestone in the PRCP schedule	50
Table 19: Representative areas of existing cattle grazing rehabilitation (monitored in 2022)	51
Table 20: Representative area of existing woodland habitat rehabilitation (monitored in 2022)	52
Table 21: PRCP schedule progressive rehabilitation summary	54
Table 22: SSM identified stakeholders, current BMA relationships, potential PRCP areas of interestand consultation outcomes	
Table 23: Process to be followed for ongoing community consultation for SSM PRCP	69
Table 24: SSM EA PMLU objectives, indicators and acceptance criteria: cattle grazing	78
Table 25: Regional land suitability framework for beef cattle grazing PMLU rehabilitation in the Bowen Basin (Short, 2025)	80
Table 26: SSM EA PMLU objectives, indicators and acceptance criteria: woodland habitat	81
Table 27: SSM PMLU objectives, indicators and acceptance criteria: watercourse	83
Table 28: SSM EA PMLU objectives, indicators, and acceptance criteria: dryland cropping	84
Table 29: Breakdown of SSM NUMA areas	87
Table 30: Modelled climate scenarios as part of the groundwater assessment	94
Table 31: Equilibrium groundwater inflow to the residual voids	96
Table 32: Recommended Roper area hydrogeological work package activities	101
Table 33: Peak flow comparison between the pre-mining condition and closure landform, immediately prior to the confluence with the Isaac River	104
Table 34: Recommended Roper area waste characterisation work package activities	110
Table 35: Key physiochemical properties of stockpiled soil management groups and spoil materia	
Table 36: SSM required growth media volumes for PMLUs	
Table 37: Growth media ameliorant options and surface treatments for the SSM PMLUs	
Table 38: Landform structures at SSM and proposed designs	117

Table 39: SSM surface water diversion details and forward work plans	. 127
Table 40: Recommended species list and seeding rates for cattle grazing and grassland PMLUs	3131
Table 41: Life form and functional groups assigned to species based on their structural form or ecological function	. 133
Table 42: Recommended species list and seeding rates for woodland habitat PMLU	. 134
Table 43: Recommended species list and seeding rates for watercourse PMLU – upper and mic	l . 138
Table 44: Recommended species list and seeding rates for watercourse PMLU – lower banks	. 140
Table 45: Summary of SSM TSFs	. 143
Table 46: Summary of SSM tailings testing of inherent geotechnical properties	
Table 47: Summary of SSM TSF moisture content and density	. 146
Table 48: Summary of SSM TSF peak and remoulded shear strengths	. 146
Table 49: Summary of soil water characteristic testing of tailings	. 147
Table 50: Recommended Roper area TSF geotechnical work package activities	. 147
Table 51: Summary of SSM residual void low-wall stability analysis	. 149
Table 52: Summary of SSM residual void high-wall stability analysis	. 149
Table 53: Summary of SSM water balance model findings	. 150
Table 54: Proposed residual void dimensions and overall wall angles	. 152
Table 55: Improvement and/or management strategies for the SSM residual voids	. 153
Table 56: Infrastructure associated with the approved SSM mining activities	. 157
Table 57: Key rehabilitation activities and rehabilitation milestones for SSM	. 160
Table 58: Key management/improvement activities and management milestones for SSM	. 168
Table 59: BHP risk likelihood table	. 171
Table 60: BHP risk impact table	. 171
Table 61: BHP RRR heat map	. 172
Table 62: Necessary risk treatments identified to achieve a stable condition for the PMLUs	. 172
Table 63: Necessary risk treatments identified to achieve a safe and structurally stable NUMA the does not cause environmental harm	
Table 64: Rehabilitation milestones with relevant reporting requirements	. 186
Table 65: Erosion type and severity	. 189
Table 66: Cattle grazing, grassland and woodland habitat PMLU monitoring schedule and meas rehabilitation parameters	
Table 67: Soil and spoil analysis parameters for rehabilitation monitoring	. 191
Table 68: Grazing Land Management ABCD Land Condition Framework (DES, 2022a)	. 193
Table 69: Pasture condition assessment table	. 194
Table 70: BioCondition benchmarks and scoring of site-based attributes for representative regio ecosystems	
Table 71: Watercourse PMLU monitoring schedule and measured rehabilitation parameters	. 197

Table 72: SSM cattle grazing reference sites	200
Table 73: SSM woodland habitat reference sites	201
Table 74: SSM watercourse reference site locations	203
Table 75: Surface water monitoring locations	207
Table 76: Groundwater monitoring locations	210
Table 77: Management milestones with relevant reporting requirements	213
Table 78: Time for achievement of surface requirements and PMLUs rehabilitation milestones .	214
Table 79: Timeline for achievement of sufficient improvement for NUMA management mileston	
Table 80: SSM rehabilitation milestones and milestone criteria	222
Table 81: SSM management milestones and milestone criteria	232

Glossary of terms and abbreviations

Key terms and abbreviations, and associated definitions used in this report are listed below.

Term/Abbreviation	Description
3P grasses	Perennial, productive and palatable grasses
ACARP	Australian Coal Research Association Research Program
Administering authority	Department of Environment, Science and Innovation (Queensland)
AD	Acid/acidic drainage
AEP	Annual exceedance probability
AHD	Australian height datum
AMD	Acid and metalliferous drainage
AQP	Appropriately qualified person
ASC	Australian Soil Classification
ATP	Authority to prospect
BBAC	Barada Barna Aboriginal Corporation
bcm	Bank cubic meter
BMA	BHP Mitsubishi Alliance
вом	Bureau of Meteorology
CEC	Cation exchange capacity
CHPP	Coal handling processing plant
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)
DAF	Department of Agriculture and Fisheries (Queensland)
DDG	Deputy Director-General
DEM	Digital elevation model
DES	Department of Environment and Science (Queensland)
DESI	Department of Environment, Science and Innovation (Queensland)
DETSI	Department of Environment, Tourism, Science and Innovation (Queensland) (the administering authority) (previously referred to as the Department of Environment, Science and Innovation)
DLGP	Department of Local Government and Planning (Queensland)

Term/Abbreviation	Description
DNRME	Department of Natural Resources, Mines and Energy
DoR	Department of Resources (Queensland) (previously referred to as the Department of Natural Resources, Mines and Energy)
DSITI	Department of Science, Information Technology and Innovation (Queensland)
DTMR	Department of Transport and Main Roads (Queensland)
EA	Environmental Authority (in terms of the <i>Environmental Protection Act 1994</i> , Queensland)
EC	Electrical conductivity
EIS	Environmental impact statement
EP Act	Environmental Protection Act 1994 (Queensland)
EP Regulation	Environmental Protection Regulation 2019 (Queensland)
ERA	Environmentally relevant activities
ERD	Effective rooting depth
ESA	Environmentally sensitive area
ESP	Exchangeable sodium percentage
FoS	Factor of safety
FRREMP	Fitzroy Basin regional receiving environment monitoring program
GDE	Groundwater dependent ecosystem
GMA	Groundwater management area
ha	Hectares
HCL	Harrow Creek lower seam group
HCU	Harrow Creek upper seam group
HVR	High value regrowth
IA	Improvement area
	"for a NUMA, means an area of land in the NUMA to which a management milestone for the NUMA relates". (PRCP Guideline, 2024)
ICMM	International Council of Mining and Metals
IDC	Index of diversion condition
Interburden	Mineral (mining) waste located between mined coal seams

Term/Abbreviation	Description
IRC	Isaac Regional Council
LOD	Land outcomes document
LSA	Land suitability assessment
MERFP Act	Mineral and Energy Resources (Financial Provisioning) Act 2018 (Queensland)
MIA	Mine industrial area
Milestone criteria	"for a management milestone or a rehabilitation milestone, means a requirement that must be met to achieve the milestone". (PRCP Guideline, 2023)
Mineral waste	Material comprising spoil, ± tailings, ± rejects, ± waste coal. Sometimes called 'mine waste' or 'mining waste'
ML	Mining lease
MM	Management milestone "for a NUMA, means each significant event or step necessary to achieve best practice management of the area and to minimise risks to the environment (section 112 of the EP Act)" (PRCP Guideline, 2024)
NAF	Non-acid forming
NC Act	Nature Conservation Act 1992 (Queensland)
NMD	Neutral and metalliferous drainage
NPM	Norwich Park Mine (operationally referred to as Saraji South Mine (SSM))
NUMA	Non-use management area
OQMRC	Office of the Queensland Mine Rehabilitation Commissioner
OTD	Old Tailings Dam
Overburden	Mineral (mining) waste located above the top coal seams
PAF	Potentially acid forming
PMF	Probable maximum flood
PMLU	Post-mining land use "for land, means the purpose for which the land will be used after all environmentally relevant activities carried out on the land have ended (section 112 of the Environmental Protection Act 1994)" (PRCP Guideline, 2024)
PMP	Probably maximum precipitation
PRCP	Progressive Rehabilitation and Closure Plan

Term/Abbreviation	Description
PRCP Guideline	Progressive Rehabilitation and Closure Plan Guideline (September 2024)
QA/QC	Quality assurance and quality control
QR	Queensland Rail
RA	Rehabilitation area " for a post-mine land use, means an area of land in the post-mine land use to which rehabilitation milestone for the post-mining use relates" (PRCP Guideline, 2024)
RCP	Representative concentration pathway
RE	Regional ecosystems
Rejects	Waste material produced during coal processing
REMP	Receiving environment monitoring program
Residual void	An open pit resulting from the removal of ore and/or waste rock that will remain following the cessation of all mining activities and completion of rehabilitation processes, may include ramp voids
RM	Rehabilitation milestone "for the rehabilitated land, means each significant event or step necessary to rehabilitate the land to a stable condition (section 112 of the EP Act)" (PRCP Guideline, 2024)
ROM	Run-of-mine
RRR	Residual risk rating (with reference to the risk assessment)
SCL	Strategic cropping land
SD	Saline drainage
Spoil	Rock material overlying and between 'target' coal seams, which is mined and placed in the spoil dumps (i.e. overburden and interburden)
SPR	Source-pathway-receptor
SQP	Suitably qualified person (for performing a regulatory function)
SRM	Saraji Mine
SSM	Saraji South Mine
Stable condition	 "defined in section 111A of the EP Act: Land is in a stable condition if - the land is safe and structurally stable, and there is no environmental harm being caused by anything on or in the land, and

Term/Abbreviation	Description
	the land can sustain a PMLU." (PRCP Guideline, 2024)
STAC	Smart Transformation Advisory Council
TDS	Total dissolved solids
Transitional PRCP	"the holder of an existing EA for an ineligible mining activity relating to a mining lease that is transitioning into the new PRCP framework" (PRCP Guideline, 2024)
TSF	Tailings storage facility
VM Act	Vegetation Management Act 1999 (Queensland)
Waste coal	Sub-economical coal that reports to the spoil dumps as waste
WEPP	Water erosion prediction program

INTRODUCTION

Norwich Park Mine (NPM), operated by BHP Mitsubishi Alliance (BMA), is a metallurgical coal mine located in the Bowen Basin, Queensland. NPM is now operationally referred to as Saraji South Mine (SSM) and will be referred to as such in this document.

This transitional Progressive Rehabilitation and Closure Plan (PRCP) has been prepared for SSM in accordance with the requirements of the *Mineral and Energy Resources (Financial Provisioning) Act 2018* (MERFP Act). This PRCP has been developed to meet the requirements of the *Environmental Protection Act 1994* (EP Act) and the *Progressive Rehabilitation and Closure Plan Guideline* (PRCP Guideline) (DESI, 2024b).

Environmentally relevant activities (ERAs) at SSM include Schedule 3 13: mining black coal, Ancillary 08 - chemical storage, Ancillary 31 - mineral processing and Ancillary 63 - sewage treatment. These are undertaken under the conditions of the site Environmental Authority (EA) EPML00865013, provided in Appendix A.

Environmental Authority Holder: BHP COAL PTY LTD, QCT Management Pty Limited,

Mitsubishi Development Pty Ltd, Umal Consolidated Pty Ltd, QCT MINING PTY. LTD., QCT INVESTMENT PTY. LTD., BHP Queensland Coal Investments Pty Ltd

Environmental Authority Number: EPML00865013 (29 June 2023)

Tenements: ML1782 (part), ML70126, ML70127, ML70325, ML70328

(part), ML70350, ML70369, ML70370, ML70410

As detailed in the PRCP Guideline, the main purposes of the PRCP are to (subject to transitional provisions):

- Require the holder of an EA to plan for how, where and when activities will be carried out on land in a way
 that maximises the progressive rehabilitation of the land to a stable condition (defined in section 111A of
 the EP Act)
- Provide for the condition to which the holder must rehabilitate the land before the EA may be surrendered This PRCP comprises two parts:
- Section A: Rehabilitation planning part provides information about the site, details the rehabilitation methodologies and techniques, and includes evidence and justification to support the development of the proposed PRCP schedule
- Section B: PRCP schedule includes maps of rehabilitation and closure outcomes for the site, and tables
 of time-based rehabilitation milestones

This PRCP also includes Section C: Appendices, providing specialist studies and technical assessments used to support the development of the PRCP.

TRANSITIONAL PROVISIONS

Part 27, Chapter 13 of the EP Act sets out the transitional provisions following the commencement of the MERFP Act. In particular, BMA is a 'mining EA holder' for the purposes of the transitional provisions on the basis that, on commencement of the MERFP Act, BMA was "the holder of an environmental authority (EPML00865013) for a mining activity relating to a mining lease authorising operations" at SSM (section 750, EP Act).

The transitional provisions provide how an EA holder is to 'transition' into the PRCP regime. This was summarised, and additional guidance provided, within, Section 6 of the PRCP Guideline which states it applies to "existing EA holders who must transition into the new PRC Plan framework".

In accordance with the transitional provisions and requirements of Section 6 of the PRCP Guideline, BMA has adhered to the following process to transition rehabilitation and closure outcomes from the SSM EA into the PRCP schedule:

- 1. Identifying rehabilitation and closure outcomes in the land outcome document (LOD)
- 2. Identifying post-mine land uses (PMLUs)
- 3. Identifying non-use management areas (NUMAs)
- 4. Defining rehabilitation areas (RAs) within the PMLU, or improvement areas (IAs) within the NUMA
- 5. Identifying milestones
- 6. Identifying milestone criteria
- 7. Identifying when the first rehabilitation milestone (RM) and management milestones (MM) must commence and completion dates for the milestones

In accordance with transitional provisions (section 750, EP Act), the SSM EA (EPML00865013) is an approved LOD.

Acceptance criteria for rehabilitation requirements were included consistently across all BMA site EAs in 2018. Per BMA's understanding of the legislative intent, BMA has transitioned the EA rehabilitation requirements and acceptance criteria into the SSM PRCP.

Transitional timeline

Timeline of the key steps in the assessment process for this transitional PRCP includes:

- A Transition Notice for SSM was issued to BMA by the administering authority, dated 27 May 2021 (Appendix B). This Transition Notice required submission of the SSM PRCP by 1 October 2024.
- The Transition Notice was issued following a pre-notification meeting held between the administering authority and BMA on 6 May 2021. This PRCP is based on the key aspects agreed on by the administering authority during this meeting, as documented in the PRCP NPM Notification Memo, provided in Appendix C.
- Prior to the PRCP submission, a pre-lodgement meeting between the administering authority and BMA
 was held on 16 September 2024. This was arranged to discuss the key content of the site's draft plan,
 aimed at identifying any notable gaps or refinements needing to be addressed prior to the final
 submission.
- The transitional SSM PRCP was submitted to the administering authority on 1 October 2024.
- An Information Request Notice was issued to BMA by the administering authority, dated 11 December 2024.
- The response to the Information Request and revised PRCP (plan, schedule and updated Appendices) were provided to the administering authority on 4 July 2025.
- BMA received a Decision Notice on the PRCP schedule from the administering authority on 29 August 2025, approving the proposed PRCP schedule with conditions or amendments the administering authority enforced additional erosion milestone criteria.
- A final version of the transitional SSM PRC plan was submitted to the administering authority on 26 September 2025 to align with the approved PRCP schedule.

KNOWLEDGE BASE REFINEMENT

Compilation of this PRCP has been supported by the rehabilitation and closure-related knowledge base for SSM at the time of submission of this PRCP (original submission 1 October 2024 with an update relating to the administering authority Information Request submitted on 4 July 2025). Relevant studies contributing to this knowledge base have been referenced throughout this PRCP, with key resources provided in Part C: Appendices.

As highlighted by the International Council of Mining and Metals in the *Integrated Mine Closure: Good Practice Guide*, 3rd Edition (ICMM, 2025), "the collection, updating, use and review of the knowledge base is an ongoing

and iterative process over the mine life, used to inform the closure planning process". ICMM also indicate "gaps and uncertainties will be identified over the mining life cycle, with studies, research and trials undertaken as needed to close knowledge gaps" and "the plans to address gaps and uncertainties over the life of the mine should be incorporated into the closure execution plan and used to inform closure planning and implementation."

The Australian Government state in their Leading Practice Sustainable Development Program for the Mining Industry Mine Rehabilitation handbook that "at worst, initiating closure operations when the site has not developed the skills, equipment and necessary technical knowledge to successfully carry out a large rehabilitation program can result in very poor outcomes requiring very costly remediation, and with greatly reduced probability of successful closure" (DIIS, 2016).

Internal BHP guidance states that the knowledge base is the foundation for all other steps in the closure management process and review of the knowledge base should enable gaps and uncertainties to be identified for defining forward work plans. Without a robust, relevant and fit for purpose knowledge base, decisions may be made without the right level of detail or erroneous information, resulting in sub-optimal closure outcomes, increased closure risk and destruction of asset value through increased cost and/or time for closure implementation.

As the rehabilitation and closure knowledge base for SSM develops, it will be used to inform ongoing refinement of the plans for rehabilitation and closure, as well as this PRCP as required.

A: REHABILITATION PLANNING

1 PROJECT PLANNING

Legislative Requirement

In accordance with Section 126C(1)(b) and (c)(ii) of the EP Act, the rehabilitation planning part of the PRC Plan must include a description of:

- · each resource tenure, including the area of each tenure
- the relevant activities to which the application relates
- the likely duration of the relevant activities
- how and where the relevant activities are to be carried out, including maps.

PRCP Guideline

- The following spatial information must be submitted as part of the PRC Plan:
- the location and maximum extent of disturbance footprint for the mine life
- the PMLUs and NUMAs for the area within the resource tenures
- any sensitive receptors.

In addition to the list above, the PRC Plan must include spatial information outlining the rehabilitation and improvement areas that correspond to the proposed PRCP Schedule. The spatial information must show the locations of the rehabilitation and improvement areas for a 10-year period (minimum).

All spatial information must be prepared and submitted in accordance with the guideline 'Spatial Information Submission' (ESR/2018/4337).

1.1 Project description

1.1.1 Geographic location

SSM is located 5km east of the town of Dysart and 86km northeast of Emerald, in Queensland's Bowen Basin (Figure 1). BMA's Saraji Mine (SRM) is located directly to the north of SSM.

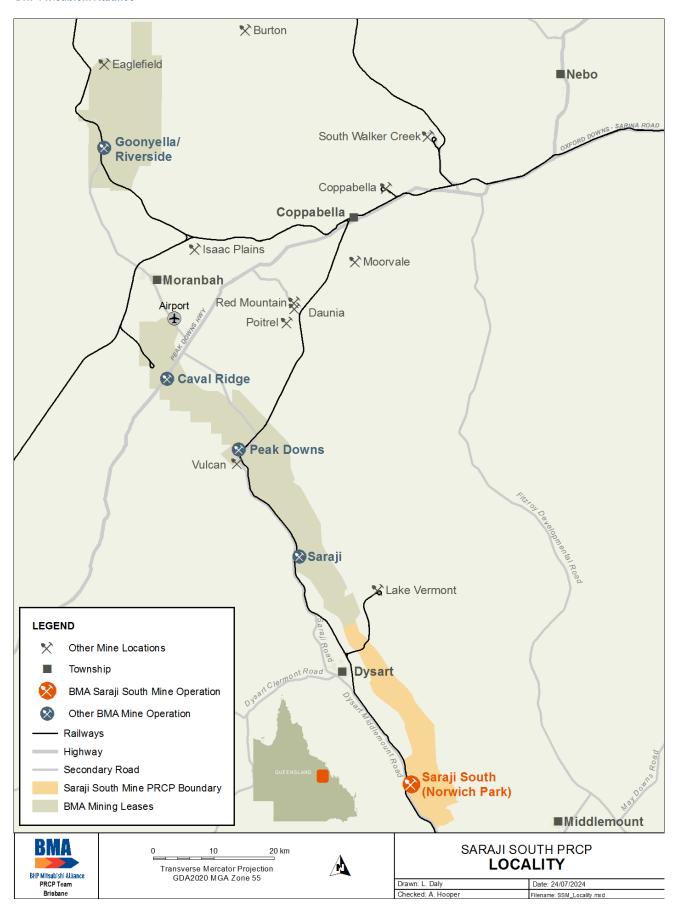


Figure 1: SSM location map

1.1.2 Mining tenements

SSM operates on the mining leases (MLs) listed in Table 1 and illustrated in Figure 2. The MLs associated with the SSM EA boundary cover 16,139 hectares (ha). The SSM PRCP boundary shown in Figure 2 aligns to the SSM EA boundary. The SSM EA includes the southern part of ML1782 and ML70328, with the northern parts of these MLs included within the SRM EA area.

Table 1: SSM mining tenements

Lease number	Name	Date granted		
ML1782 (part)	Lotus Pit	22 December 1983		
ML70126	Infrastructure associated with coal mining	22 April 2004		
ML70127	Campbell Pit	10 April 1997		
ML70325	Lotus pit	01 September 2006		
ML70328 (part)	Tay-Glen	01 December 2006		
ML70350	East-Pit	01 May 2009		
ML70369	Lotus Pit Infrastructure	17 April 2008		
ML70370	South Lotus Pit	01 January 2011		
ML70410	Norwich Park Industrial Area South	01 December 2011		

This PRCP covers mining activities within the State approved mining footprint, which does not include the nil surface areas within ML1782 to the east of Lotus/Campbell Pit, ML70126 to the north of the rail loop and the Lake Vermont rail line (Figure 2).

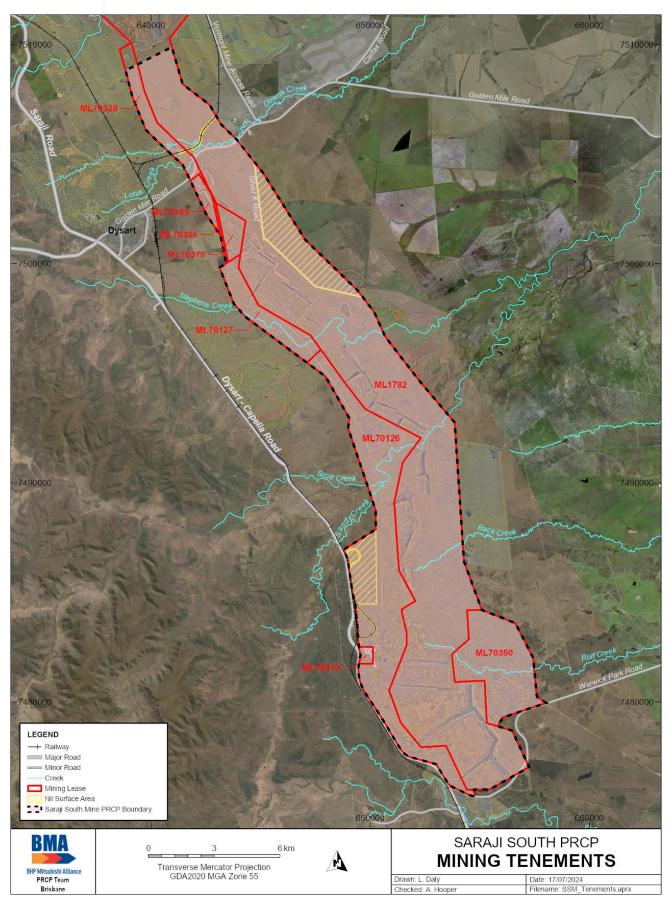


Figure 2: SSM mining tenements

1.1.3 Primary mine features and infrastructure on-site

The current primary mine features and infrastructure, including BMA and third-party owned, within SSM are summarised in Table 2. The current site layout is shown in Figure 3.

Table 2: Primary mine features and infrastructure at SSM

Mine domain	Description
Voids and spoil dumps	 Lotus/Campbell Pit Gilbert Pit Price/Leichhardt Pit Roper Pit East Pit (future pit)
Stockpiles	 Run-of-mine (ROM) coal stockpiles Product coal stockpiles Topsoil stockpiles Rock stockpiles
Rejects dump	Ramp 67/68 (in-pit)
Tailings storage facilities (TSFs)	Ramp 67 (in-pit)Old tailings dam (OTD)
Dams	Mine affected water damsRaw water damsSediment dams
Creek diversions	Stephens CreekDowns CreekLotus CreekRolf Creek
Mine industrial area (MIA) and rail infrastructure	 Workshops and warehouse Various buildings Fuel, oil, chemical and water storage Fuel and wash bays Park up and laydown areas Rail loop and spur Train load-out bin and facilities Conveyors and transfer stations Reclaim tunnel
General infrastructure	Various buildings

Mine domain	Description
	Sewage treatment plants
	Landfills
	Pipes and pumps
	Powerlines
	Switchyard and substations
	Communication and lighting towers
	• Fences
General disturbance	Laydown areas
	Access roads
	Haul roads
	Drains and culverts
	Exploration
Regional infrastructure	Golden Mile Road
	Silver K Road
	Warwick Park Road
	Lake Vermont Railway Spur
	Regional powerlines
	Regional water pipelines

1.1.4 Type of mining operation

SSM is a conventional open cut, strip mine with mining progressing eastwards, down dip. Mining activities at SSM involve the removal and stockpiling of topsoil, drilling and blasting of overburden and interburden, and mining of overburden, interburden and coal. The majority of the overburden and interburden is placed in spoil dumps within the void of the previous mined out strips.

Mining at SSM is currently undertaken with truck and shovel fleets. Prior to 2012, SSM was mined with both dragline and truck and shovel fleets, and draglines may be utilised again in the future.

Coal was processed at the SSM coal handling processing plant (CHPP) located within the mine industrial area prior to 2012. Coal is currently hauled from the pits to designated coal stockpiles on SSM, before being hauled to the SRM CHPP for processing. Product coal is transported by rail from SRM to the Hay Point Coal Terminal for export.

1.1.5 Proposed duration of the operation

Operations at SSM commenced in 1979. SSM was placed in care and maintenance in 2012 with mining recommencing in October 2022. SSM is planned to be mined until 2098 in the current life-of-mine plan, within the approved extent of the EA. Variations to the planned mining rates due to business or market conditions, changes to technology, or refined resource information may also change the proposed duration of the operation, and as a result, when necessary, a PRCP amendment would be submitted to the administering authority.

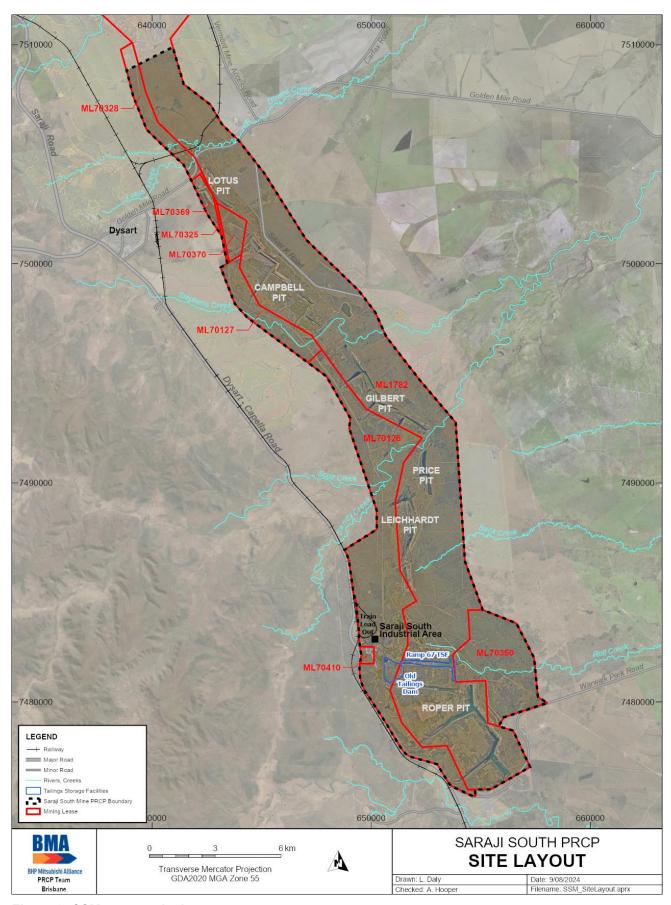


Figure 3: SSM current site layout

1.2 Baseline information

PRCP Guideline (Section 3.1)

In addition to the legislative requirements, the following information about the site, where relevant, is considered necessary by the administering authority (as per section 126C(1)(j) of the EP Act) to decide whether to approve the PRCP Schedule:

- site topography (locally and regionally)
- climate (general and specific (rain, evaporation, temperatures)) including long-term projections
- geological setting
- site hydrology and fluvial networks
- groundwater levels and properties
- soil types, properties, and productivity
- land stability (pre-existing land degradation/erosion and predisposition to ongoing stability issues)
- vegetation communities and ecological data (including existing regional ecosystem mapping)
- fauna presence and populations
- pre-mining land use
- identification of underlying landholders

Transitional PRC Plans must include any baseline information collected as part of an EIS process or original EA application. If this information is unavailable, the reasons should be explained in this section of the rehabilitation planning part. Transitional PRC Plans are not required to demonstrate how aspects of the mine site have been designed for closure for existing or approved disturbance. However, any expansion to an existing site must demonstrate how it has been designed for closure. The rehabilitation/improvement planning must include data from when mining first commenced up until planned surrender. The transitional provisions of the EP Act include an exceptional circumstance for when land is available for rehabilitation.

1.2.1 Site topography

The topography of the SSM area is relatively flat with gentle undulations, with an overall easterly gradient of less than 1% from the Harrow Range in the west to the Isaac River in the east.

The elevation across SSM ranges from approximately 180m Australian height datum (AHD) along the central eastern boundary to 220m AHD along the southern western boundary.

1.2.2 Climate

SSM is located in a semi-arid climatic zone, which is characterised by high summer temperatures, warm dry winters and a distinct wet and dry season.

Climate data is sourced from the Bureau of Meteorology (BOM) (BOM, 2023). The closest BOM weather stations for rainfall data are located at Dysart Post Office (Station No. 35278) and Dysart Station (Station No. 35092), approximately 3km to the west of the SSM area. The Dysart Post Office weather station operated between 1988 and 2006 and Dysart Station operated between 1956 and 2008. The nearest weather station with a longer data record for rainfall is Booroondarra (Station No. 35109) located at the southern extent of SSM. The Booroondarra weather station has been in operation since 1929. The closest BOM weather station for temperature is Moranbah Airport (Station No. 34035).

1.2.2.1 Temperature

Maximum average temperatures range from 24°C in June/July to 35°C in December/January, with minimum average temperatures ranging from 9°C in July to 21°C in January/February.

1.2.2.2 Rainfall

Rainfall occurs throughout the year, though it is more prevalent in the summer months (Table 3).

Table 3: Average monthly rainfall

Month	Dysart Post Office (Station No. 35278) (mm)	Dysart Station (Station No. 35092) (mm)	Booroondarra (Station No. 35109) (mm)	
January	91.5	105.5	111.8	
February	85.6	103.7	95.8	
March	46.0	60.4	71.6	
April	28.5	38.7	33.4	
May	37.1	42.0	36.3	
June	23.1	23.4	24.2	
July	7.8	28.1	23.4	
August	30.0	18.8	23.4	
September	9.6	13.7	15.5	
October	43.4	34.7	38.2	
November	48.1	58.9	54.3	
December	115.4	94.2	95.7	
Annual	523.6	601.7	623.5	

1.2.2.3 Evaporation

The actual evapotranspiration is highest in December at 130mm, and lowest in June at 35mm.

1.2.2.4 Wind

Wind records for Moranbah for January-April show an easterly predominance of moderate strength (1 - 20km/h), with easterlies dominating in May-July with some south-easterly influence. Easterly winds predominate for August-December which tends north to north-easterly from October to December.

1.2.2.5 Long-term climate projections

To account for potential future climate uncertainties within hydrologic designs and mine water planning, this PRCP and supporting technical studies have utilised the *BMA Climate Change Adaptation in Mine Water Planning and Hydrologic Assessments Guideline* (BMA, 2023). This guideline was developed specifically for the locations of the BMA assets to provide a consistent approach to the adoption of future climate variables. The approach and baseline data, on which the guideline was based, has been derived from Commonwealth Scientific and Industrial Research Organisation (CSIRO), BOM, Department of Environment, Tourism, Science and Innovation (DETSI) and other published sources and is aligned with the published projection database and methods including Consistent Climate Scenarios Projection Data and High-Resolution Projection Data.

1.2.3 Geological setting

SSM is located on the western limb of the northern Bowen Basin and is characterised by a relatively thin accumulation of sediments, gentle easterly dips and minor to moderate deformation. The lithology at SSM is

characterised by typical basin-fill sediments, comprising mudstone, claystone, siltstone, sandstone, carbonaceous sediments and coal seams. Igneous intrusions are present as dykes and sills throughout the site. The depth to base of weathering ranges from about 15 to 25m below natural surface in the northern half of the site (north of Leichhardt Pit) to about 25 to 50m below natural surface in the southern half of the site (Leichhardt Pit and further south). The Queensland regional detailed surface mapping (DNRME, 2018) indicates that significant areas of Quaternary alluvium are present across the surface of SSM. However, site investigations have noted that surface cover is Tertiary aged colluvium and regolith, therefore the actual distribution of Quaternary alluvium in the SSM area is more restricted than is mapped in the public surface geology. See Section 1.2.5.3 for further information on Quaternary and Tertiary sediments.

The coal bearing sequences at SSM are the late Permian-age German Creek Formation and contemporaneous equivalent Moranbah Coal Measures, with the facies change between the German Creek Formation and Moranbah Coal Measures located approximately at Lotus/Campbell Pit area. As such, most of SSM is within the German Creek Formation. The site comprises the following seam groups in stratigraphic order, from youngest to oldest:

- P seam group (minor upper seams; mostly in the weathered zone; potentially only encountered in latestage mining below base of weathering in Gilbert, Price and Leichhardt pits)
- Harrow Creek Upper (HCU) seam group
- Harrow Creek Lower (HCL) seam group
- Dysart seam group, comprising Dysart Upper and Dysart Lower seams

Seam splitting is prevalent along the length (north-south) of all pits.

Overlying the German Creek Formation/Moranbah Coal Measures at SSM is the late Permian-age Macmillan Formation – a transgressive marine unit within the weathered zone at SSM and comprised of fine-grained weathered mudstone/siltstone sediments. The late Permian-age Fort Cooper Coal Measures also overly the Moranbah Coal Measures and sub-crop east of SSM, therefore they are not present at SSM.

To date, all of the coal mined at SSM has been from the HCL and Dysart seam groups. As mining progresses eastwards (down-dip) the HCU seam group will become more prevalent. The P seam group is currently well within the weathered zone and may only be mined from fresh rock towards the latter years of mining.

Geological cross-sections (indicatively west-east) through the pits (including current topography) are provided in Figure 4, Figure 5 and Figure 6. The seam groups are shown in the geological sections. The proposed East pits are directly down dip of Roper Pit and will be mining the same overburden and coal seams as Roper Pit, down to the base of the HCU.



Figure 4: Geological cross-sections - Campbell Pit

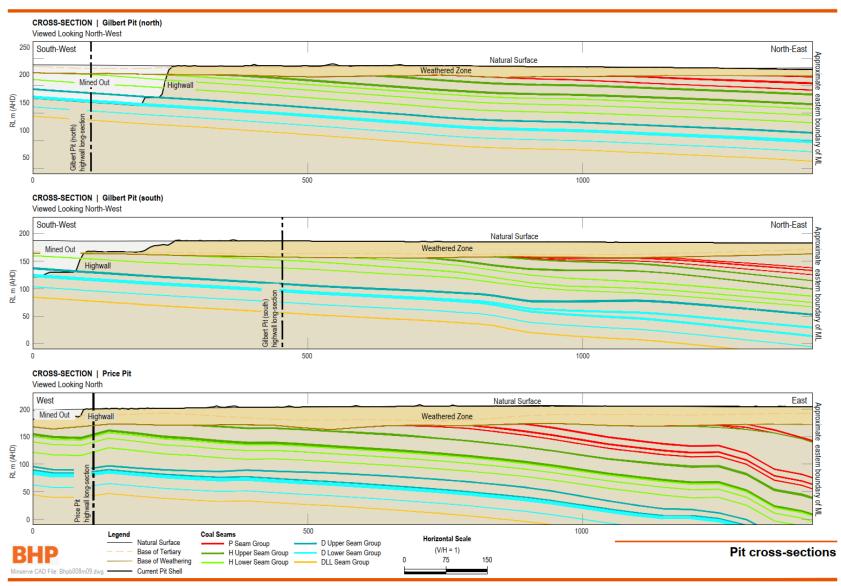
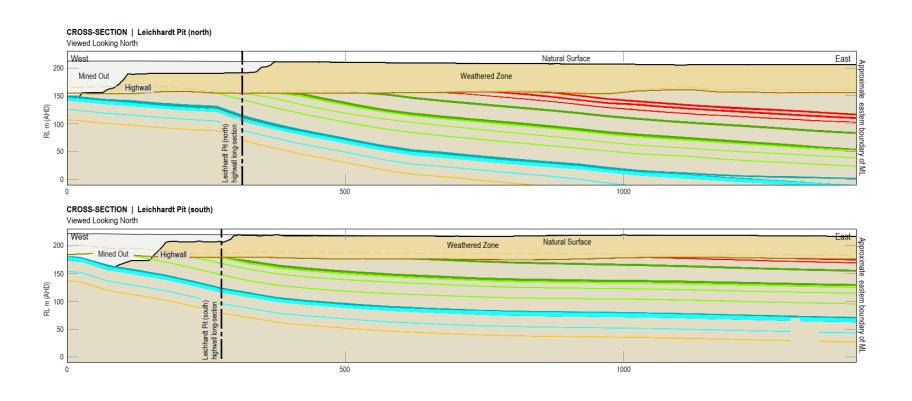



Figure 5: Geological cross-sections – Gilbert and Price Pits

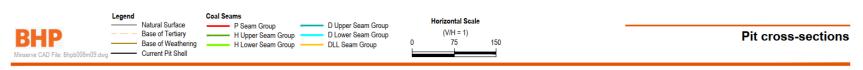


Figure 6: Geological cross-sections – Leichhardt Pit

1.2.4 Site hydrology and fluvial networks

The SSM site is located within the Fitzroy Basin and across both the Isaac River and Mackenzie River Sub-basins.

The majority of SSM is located within the Isaac River Sub-basin. Within the Isaac River Sub-basin, the site spans across both the Upper and Lower Isaac Catchments and the Isaac Western Upland Tributaries Sub-catchment. This portion of the site generally drains to the east towards the Isaac River, which is located approximately 50km from the eastern EA boundary.

The southern most portion of SSM, consisting of the southern end of the Roper Pit, is located within the Mackenzie Sub-basin and within the Mackenzie Northern Western Tributaries Sub-catchment of the Mackenzie Catchment. This area generally drains to the southeast towards the Mackenzie River located approximately 55km from the southern EA boundary.

The catchments in which SSM are located are covered under the *Environmental Protection (Water and Wetland Biodiversity) Policy 2019* and Department of Environment and Heritage Protection (2011):

- Isaac River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including water of the Isaac River Sub-basin (including Connors River)
- Mackenzie River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including all waters of the Mackenzie River Sub-basin

The prescribed environmental values of the sub-catchments are summarised in Table 4.

Table 4: Surface water environmental values

Sub-catchment	Aquatic ecosystems	Irrigation	Farm supply/ use	Stock water	Aquaculture	Human consumer	Primary recreation	Secondary Recreation	Visual recreation	Drinking water	Industrial use	Cultural and spiritual value
Isaac Western Upland Tributaries	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Mackenzie north-western tributaries - developed areas	✓	-	-	✓	-	✓	√	✓	~	√	~	✓

All watercourses and tributaries within and in the vicinity of SSM are ephemeral and only flow briefly after rainfall that is significant enough to generate surface runoff. After ephemeral flows within the watercourses, water remains temporarily in shallow non-flowing pools. Watercourses at SSM have their headwaters in the Denham Range located to the west of the site. The watercourses that intersect SSM are summarised in Table 5 and are shown in Figure 7.

Table 5: Watercourses and key drainage lines within and immediately surrounding SSM

Watercourse	Perenniality	Hierarchy	Strahler stream order*	Comment
Downs Creek	Intermittent	Minor	2 - 3	Runs west to east on the northern side of the Golden Mile Road. A diversion is present immediately downstream of the confluence with Lotus Creek on ML1782.
Lotus Creek	Intermittent	Minor	1 - 2	Tributary of Downs Creek with the confluence on ML1782. A diversion is present immediately prior to the confluence with Downs Creek diverting the flows to the north of the Golden Mile Road.
Stephens Creek and tributaries	Intermittent	Major	5	Drains from west to east across the site with the confluence with Blackburn Creek approximately 24km to the northeast. A diversion is present that directs flows to the south of Campbell Pit.
Scott Creek and tributaries	Intermittent	Minor	5	Drains from west to the northeast between Gilbert Pit and Price Pit following the natural watercourse. Some minor diversion works present around the confluence with Sandy Creek, associated with the haul road on the western side of the site. Confluence with Stephens Creek is located approximately 7km to the northeast.
Sandy Creek and tributaries	Intermittent	Minor	3	Drains in a north easterly direction with the confluence with Scott Creek located on the western portion of the site. The catchment area is primarily located off site to the west of the MIA and rail loop.
Rolf Creek	Intermittent	Minor	1 - 2	The upper part of the catchment includes the MIA with the diverted drainage line running to the east on the northern side of Roper Pit. The confluence with the Isaac River is approximately 53km to the east of the site.
Roper Creek	Non-perennial	Major	4	Roper Creek runs to the south of SSM (outside of EA) in a west to east direction. The confluence of Roper Creek with the Mackenzie River is located approximately 55km to the southeast of the site.

^{*} Within the area of the SSM EA area only

The voids at SSM are utilised as water storages within the BMA central complex (Caval Ridge Mine, Peak Downs Mine, SRM and SSM) water management network. The voids provide water storage capacity for runoff from mine affected areas during periods of above average precipitation and provide water to sustain operations during prolonged periods of drought.

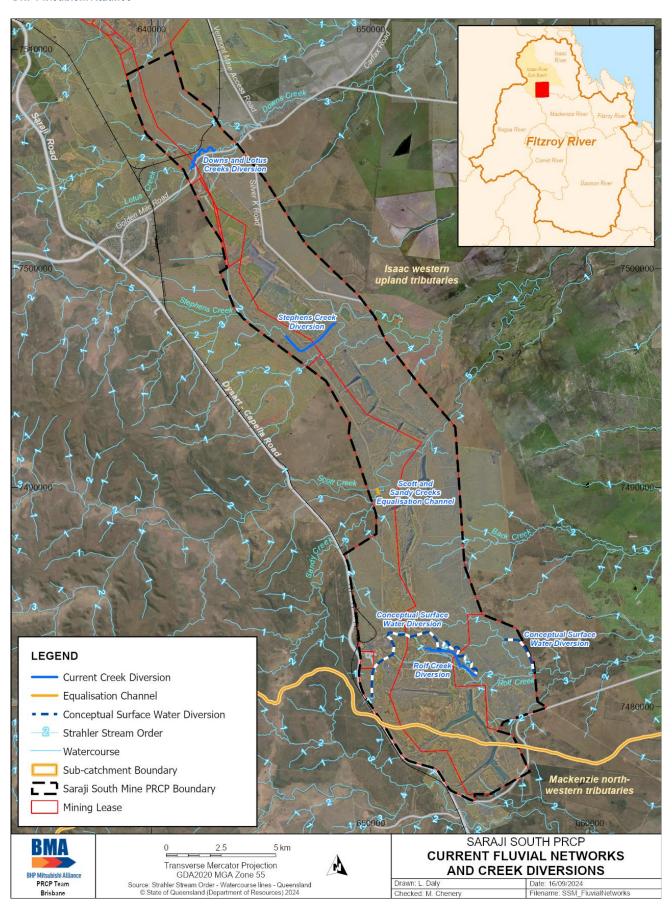


Figure 7: SSM Fluvial network and diversions

As part of the SSM mining operations, BMA currently holds water licences permitting:

- Diversion of watercourses
- Interfering with the flow of water by impounding

Water licences applicable to SSM are summarised in Table 6.

Table 6: Water licences applicable to SSM

Authorisation number	Authorisation activity	Authorised purpose	Approval date (most recent update)	Expiry date
402409	Licence to interfere by diversion – Channel: Downs Creek/Lotus Creek	Divert the course of flow	23/12/2014	30/06/2111
0426519F	Licence to interfere by diversion – Channel: Stephens Creek	Divert the course of flow	5/2/2015	30/06/2111
34744F	Licence to interfere by diversion – Channel: Rolf Creek	Divert the course of flow	16/12/2014	30/06/2111
52620F	Licence to interfere by impounding – Embankment or Wall: Rolf Creek	Impound Water	17/6/2010	30/06/2111
46304F	Licence to interfere by diversion: Scott Creek and Sandy Creek	Divert the course of flow	23/12/2014	30/06/2111

1.2.4.1 Fluvial Water Quality

Surface water quality within the fluvial network that intersects SSM was previously assessed through the Receiving Environment Monitoring Program (REMP) and currently through the Fitzroy Basin Regional Receiving Environment Monitoring Program (FRREMP). These monitoring programs have been undertaken in accordance with the conditions of the EA and other approvals. This water quality monitoring program has been established with appropriate data quality objectives for routine monitoring to assess potential operational influences on water quality. The monitoring program has not been designed and undertaken for the establishment of surface water quality limits that would be suitable for the post-mining environment. Post-mining water quality limits should be site-specific and developed in-line with relevant Australian guidance for temporal waters.

Background surface water quality has been assessed through sample points within Stephens, Scott and Sandy creeks, located upstream and to the west of SSM operations. The interpretation of upstream water quality has utilised suitable monitoring data collected during periods of flow from the commencement of the REMP in 2010. Upstream results reflective of background surface water quality at SSM, reproduced from the REMP report (Gauge, 2023), are summarised in Table 7.

Table 7: Summary of upstream water quality results (2015 to 2021)*

		Combined Upstream Statistics					
Analyte	Unit	80 th percentile	80 th percentile plus one standard deviation	Mean	20 th percentile	20 th percentile less one standard deviation	
Electrical conductivity (EC)	μS/cm	308	319	279	127	116	
Turbidity	NTU	3,394	3,660	2,108	25	-241	
Dissolved oxygen	%	90.44	95.47	82.93	53.07	48.05	
Temperature	°C	28.25	28.88	27.83	24.25	23.62	
TSS	mg/L	890.80	984.56	603.47	28.88	-64.88	
Hardness	mg/L	67.84	72.73	65.07	36.96	32.07	
SO ₄	mg/L	13.20	13.57	11.73	4.20	3.83	
Fluoride	μg/L	168.00	173.17	140.00	50.00	44.83	
Ammonia	μg/L	78.40	86.48	64.67	17.00	8.92	
Nitrate	μg/L	293.84	314.20	210.53	8.60	-11.76	
Total nitrogen	μg/L	5,356	5,762	3,840	1,132	726	
Total phosphorus	μg/L	2,356	2,563	1,672	324	117	
C6 - C9	μg/L	10	10	10	10	10	
C10 - C36	μg/L	25	28	25	25	22	
Al (dissolved)	μg/L	590.80	642.18	507.33	20.80	-30.58	
As (dissolved)	μg/L	2.6	2.7	2.0	0.5	0.4	
B (dissolved)	μg/L	58.40	63.98	47.00	25.00	19.42	
Cd (dissolved)	μg/L	0.05	0.06	0.05	0.05	0.04	
Cr (dissolved)	μg/L	0.50	0.57	0.50	0.50	0.43	
Co (dissolved)	μg/L	0.50	0.53	0.50	0.50	0.47	
Cu (dissolved)	μg/L	2.60	2.82	2.20	0.50	0.28	
Fe (dissolved)	μg/L	816	851	648	79	43	
Pb (dissolved)	μg/L	0.50	0.53	0.50	0.50	0.47	
Mn (dissolved)	μg/L	3.48	4.96	3.27	0.60	-0.88	
Hg (dissolved)	μg/L	0.05	0.05	0.05	0.05	0.05	

		Combined Upstream Statistics							
Analyte	Unit	80 th percentile	80 th percentile plus one standard deviation	Mean	20 th percentile	20 th percentile less one standard deviation			
Mo (dissolved)	μg/L	0.50	0.51	0.50	0.50	0.49			
Ni (dissolved)	μg/L	4.68	4.83	4.07	2.00	1.85			
Se (dissolved)	μg/L	5.00	5.00	5.00	5.00	5.00			
Ag (dissolved)	μg/L	3.20	3.37	2.00	0.50	0.33			
U (dissolved)	μg/L	0.50	0.50	0.50	0.50	0.50			
V (dissolved)	μg/L	14.00	14.58	10.00	5.00	4.42			
Zn (dissolved)	μg/L	5.76	7.09	4.63	2.50	1.17			
Al (total)	μg/L	27,048	30,235	19,194	1,408	-1,779			
As (total)	μg/L	5.56	5.79	4.20	1.10	0.87			
B (total)	μg/L	50.00	52.40	46.67	25.00	22.60			
Cd (total)	μg/L	0.05	0.06	0.05	0.05	0.04			
Cr (total)	μg/L	80.32	86.16	51.53	2.56	-3.28			
Co (total)	μg/L	19.04	22.96	13.47	1.16	-2.76			
Cu (total)	μg/L	25.92	29.19	17.73	2.00	-1.27			
Fe (total)	μg/L	39,028	43,038	26,814	2,440	-1,570			
Pb (total)	μg/L	11.80	13.01	9.80	0.82	-0.39			
Mn (total)	μg/L	515.80	604.61	364.07	46.28	-42.53			
Hg (total)	μg/L	0.05	0.05	0.05	0.05	0.05			
Mo (total)	μg/L	0.50	0.68	0.50	0.50	0.32			
Ni (total)	μg/L	83.12	93.35	54.67	4.56	-5.67			
Se (total)	μg/L	5.00	5.00	5.00	5.00	5.00			
Ag (total)	μg/L	0.50	0.54	0.50	0.50	0.46			
U (total)	μg/L	0.68	0.72	0.60	0.50	0.46			
V (total)	μg/L	62.40	66.32	41.33	5.00	1.08			
Zn (total)	μg/L	68.96	75.67	49.60	4.88	-1.83			

*Note: This data summary is not suitable for use as closure milestone criteria.

Field monitoring of upstream sample locations during flow events, undertaken as part of the REMP, has also identified pH in surface water ranging between 6.89 – 8.29.

The background surface water quality results are reflective of the upstream catchment and land uses to the north-west of SSM, which primarily consist of cattle grazing and agricultural land uses. Due to the temporal nature of the creeks and the different land uses, there is reasonable variability between the monitoring points. Analytical results from the upstream sample locations have identified concentrations of various contaminants such as dissolved metals, pH, turbidity, ammonia, nitrogen and phosphorous outside of the default guideline values for selected prescribed environmental values. The variability in the background surface water quality and the presence of concentrations that exceed the default guideline values within upstream sample locations warrants the development of site-specific criteria to evaluate if the closure landform achieves a stable condition.

1.2.5 Hydrogeology

A hydrogeological assessment, including conceptual and numerical modelling, has been undertaken to support the development of this PRCP. The detailed report – *Saraji South Mine Transitional PRC Plan Hydrogeology Assessment* (SLR, 2024b), is provided in Appendix D.

SSM is located within the Isaac Connors and Highlands groundwater management areas (GMAs) of the Fitzroy Basin under the Water Plan (Fitzroy Basin) 2011. Within the GMAs, alluvial groundwater is managed as Groundwater Unit 1 and water within the hard rock aquifers as Groundwater Unit 2 (sub-artesian aquifers). Volumetric limits apply to extraction of groundwater within the GMAs. The objectives for groundwaters within the GMA – Zone 34 management area of the Water Plan (Fitzroy Basin) 2011 are for sustainable management to maintain ecological values and enable maintenance and ongoing use of the resources through water allocations and licensing.

1.2.5.1 Groundwater take

In accordance with Section 334ZP of the Mineral Resources Act 1989 and Section 1283 of the Water Act 2000, a water licence for the taking of, or interfering with, underground water is considered granted where the taking of underground water, required for the safe extraction of the resource or due to evaporative loses on an approved mining project, began prior to commencement of the Water Act 2000. As SSM commenced operations in 1979, a water licence (in addition to those listed in the above table) is considered to be granted for the taking and interfering of underground water on the respective mining leases which pre-date the commencement of the provision.

1.2.5.2 Groundwater environmental values

SSM is predominantly located within the Isaac Groundwaters environmental values area with only the southern portion crossing into the Mackenzie Groundwaters environmental values area. The Isaac Groundwaters are located within the groundwater chemistry zone of 'sodic sequence', which is saline, Na and Cl⁻ dominated while the Mackenzie Groundwater are located in the chemistry zone 'alluvial sequence' with low-moderate salinity: balanced cations, HCO₃/Cl (DEHP, 2011).

Groundwater resources in the SSM area are also scheduled under the *Environmental Protection (Water and Wetland Biodiversity) Policy 2019*. The site predominantly falls within the Isaac Groundwaters of the Isaac River Sub-basin with only the southern end of the site located in the Mackenzie Groundwaters of the Mackenzie River Sub-basin. Both the Isaac River Sub-basin and the Mackenzie River Sub-basin fall within the Fitzroy Basin water plan (WQ1310). Table 8 summarises the groundwater environmental values.

Table 8: SSM groundwater environmental values

Groundwater zone	Aquatic ecosystems	Irrigation	Farm supply/use	Stock water	Aquaculture	Human consumer	Primary recreation	Secondary recreation	Visual recreation	Drinking water	Industrial use	Cultural and spiritual value
Isaac Groundwaters	✓	✓	✓	✓	-	-	✓	-	-	✓	-	√
Mackenzie Groundwaters	✓	~	√	~	-	-	1	-	-	√	-	✓

1.2.5.3 Hydrogeological units

The groundwater at SSM comprises the following key hydrogeological units:

- Cainozoic sediments:
 - Quaternary alluvium unconfined aquifer (sporadically water-bearing strata of permeable unconsolidated sand or gravel) localised to watercourses of Downs, Scott and Rolf creeks and in the Isaac River Alluvium to the east
 - Quaternary to Tertiary non-alluvial sediments and weathered units overlying the Permian lithology unconfined unit with limited saturation
- Permian coal measures (Moranbah, Fort Cooper and Rangal Coal Measures)
 - Low permeability interburden and overburden units with aquitard properties
 - Coal seams that exhibit water bearing properties associated with primary matrix porosity and dominant secondary porosity through cracks and fissures.

The coal seams within the Moranbah Coal Measures (including the German Creek formation) are the primary aquifer at SSM. The coal seams can be characterised as semi-confined aquifers, with the P Seam, H Seam and D Seam forming the main aquifer units locally. The Moranbah Coal Measures overburden and interburden act as aquitards and are typically dry, or very low yielding.

Quaternary alluvium

The Queensland regional detailed surface mapping (DNRME, 2018) indicates that significant areas of Quaternary alluvium are present across the surface of SSM. However, site investigations have repeatedly noted that surface cover is Tertiary aged colluvium and regolith, with alluvial material limited to within the watercourse channels where they have eroded into the Tertiary profile. Therefore, the actual distribution of Quaternary alluvium in the SSM area is more restricted than is mapped in the public surface geology. BMA drilling investigations at SSM from 2014 to 2021 failed to identify saturated lenses of alluvial material suitable for installation of monitoring bores. The two monitoring bores screened within alluvial material that have been present at SSM were located adjacent to Stephens Creek. Monitoring of the alluvium indicated the presence of groundwater between 2004 and 2009 with subsequent monitoring finding the bores were dry.

Recharge to the alluvium is considered to be mostly from stream flow or flooding (losing streams), with direct infiltration of rainfall also occurring where there are no substantial clay barriers in the shallow subsurface. Groundwater within the alluvium within SSM is considered to be temporal in nature and only present for relatively short periods after significant rainfall events.

Quaternary to Tertiary non-alluvial sediments and weathered units

Across the SSM site, the Tertiary sediments and weathered strata are generally considered to form the water table aquifer, with saturation displayed in coarse lenses of clayey sand and weathered material between 20 - 35m below ground level. At SSM the Quaternary to Tertiary sediments and weathered strata are shown in the Queensland regional detailed surface mapping (DNRME, 2018) as consisting of the following:

- Tertiary-Quaternary alluvium distributed across SSM and the surrounding area. Tertiary-Quaternary
 alluvium is defined as a poorly consolidated or unconsolidated alluvial deposit in an ancestral valley,
 which has been dissected by more recent channel activity. The thickness of these sediments varies
 across the site, uncomformably sitting on the erosional surface that forms the top of the underlying
 Permian sequence.
- Duaringa Formation covers a significant proportion of SSM, with the Lotus, Price, Leichhardt, Roper, and East pits located within this unit. Duaringa Formation is defined as mudstone, sandstone conglomerate, siltstone, oil shale, lignite and basalt.
- Colluvium and residual deposits (regolith) comprises unconsolidated undifferentiated sediments, derived from weathering of the underlying Permian strata.

Based on various BMA site investigations, the SSM area is predominantly underlain by interbedded sequences of sandstone and siltstone, dominated by highly weathered medium to coarse, low strength sandstone and moderate strength, medium to fine grained sandstone. These Quaternary to Tertiary non-alluvial sediments and weathered units are generally 6m to 20m thick, with the depth of weathering extending into the underlying Permian coal measures.

Tertiary monitoring bores at SSM are screened within Tertiary aged sand, clayey sand, sediments and basalt. Groundwater elevations within the tertiary bores are variable between locations and have varied during the monitoring period. Groundwater elevations within the Tertiary bores have been recorded between approximately 148mAHD and 211mAHD. The variability of groundwater heights within the Tertiary unit are influenced by the clay content and surrounding land uses with bores located in close proximity to the mine pits showing lower groundwater elevations compared to those areas utilised for water storage.

The relationship between Tertiary hosted groundwater elevations and weather patterns varies depending on the nature of the Tertiary material intersected. Selected Tertiary wells, particularly those screened in sand, have a high correlation with the Cumulative Rainfall Departure, while other bores have shown either subdued, delayed or no discernible response. Bores with a low correlation with the Cumulative Rainfall Departure are generally located in Tertiary and regolith material, which includes low hydraulic conductivity strata (i.e., clay and claystone) which restricts rainfall recharge. Recharge of the Tertiary aquifer is predominantly associated with losing ephemeral surface drainage conditions and some direct infiltration of precipitation and seepage from water storages.

Groundwater discharge from the Tertiary aquifers occurs primarily via evapotranspiration, with some baseflow to streams under wet climatic conditions and seepage to mining voids. Vertical seepage through the Tertiary sediments and regolith is limited by the underlying low hydraulic conductivity of the Permian overburden and other aquitards, such that the Tertiary sediments and regolith effectively form a perched groundwater system.

Permian coal measures

The coal seams of the Moranbah Coal Measures sub-crop throughout the western portions of SSM. Throughout the remainder of SSM, the coal seams underlie and sub-crop beneath the surficial cover. Groundwater occurrence within the Permian coal measures is largely restricted to the more permeable coal seams that exhibit both primary porosity and the more dominant secondary porosity through fractures and cleats. Pre-mining groundwater flow through the coal seems at SSM would have been to the east, consistent with the coal seam dip. Mining activities throughout the region have locally modified groundwater flows within the Permian coal measures with mine dewatering activities creating inward hydraulic gradients towards the extraction locations.

As mining at SSM began in the 1970's, there are no pre-mining groundwater records available for the site. The earliest available groundwater data is from bores that were established in approximately 2004. Therefore, premining potentiometric surface maps for the coal measures cannot be generated due to the absence of data prior to mining.

Groundwater data for the Permian coal measures since 2004 indicates that groundwater elevations vary between approximately 151mAHD and 184.5mAHD. The variability in Permian groundwater elevations is associated with different coal seams, proximity to actively mined voids, in-pit water storages, and geological faults that have healed and act as a barrier to groundwater flows.

Recharge to the Permian coal seams, before mining, occurred where the seams were present at outcrop and sub-crop. Hydrograph analysis shows little to no reaction in water levels to significant rainfall events, suggesting that these units are insulated from direct recharge pathways. The Chloride Mass Balance method, indicates the recharge rate for the weathered Permian units is approximately 0.1mm/year. Due to the low hydraulic conductivity of the interburden material, groundwater largely flows horizontally within the coal measures, along

the bedding plane of the coal seams themselves, resulting in confined conditions. Groundwater discharge occurs via inflow to, and evaporation from mine voids.

1.2.5.4 Groundwater quality

An assessment of groundwater quality for each of the hydrogeological units, based on the existing data held, was undertaken as part of the Hydrogeological Assessment. On-going monitoring of the groundwater undertaken throughout the operational life of the mine will continue to develop the SSM data set and enable future assessments of deep drainage from the rehabilitated closure landform. The following provides a summary of the currently known groundwater quality characteristics within each of the aquifers.

Interpretation of salinity levels provided below are based on the Food and Agriculture Organisation of the United Nations, Chapter 2 – Saline waters as resources (FAO, 2013).

Quaternary alluvium

Due to the absence of identified permanent saturated alluvial material at SSM, there is limited current data available on the quality of alluvial groundwaters.

Quaternary to Tertiary non-alluvial sediments and weathered units

Monitoring bores screened within the Tertiary material at SSM and to the east of the site have predominantly recorded Na-Mg-Cl type waters, with minor variances in HCO₃ and SO₄ ion proportions. The Tertiary groundwater signatures are indicative of natural salinisation of shallow groundwater through low recharge and long term evapo-concentration.

Tertiary sediment groundwater samples indicate a broad range of salinity with results identifying fresh to saline water quality. Monitoring results have recorded a salinity range between 377mg/L to 11,600mg/L, with a mean value of 4,808mg/L. One Tertiary bore screened in weathered basalt displays water quality in line with the broader Tertiary/Regolith aquifer, with three samples displaying a range between 4,384mg/L and 4,847mg/L.

Permian

Monitoring bores screened within the Permian consistently record mixed/intermediate type waters with moderate salinity. Within the Permian coal measures (interburden), monitoring bores recorded predominantly Na-Cl and Na-Mg water types. Bores that were shallower demonstrate relatively higher proportions of SO₄ ions, with deeper bores returning higher proportions of HCO₃ ions. This is likely due to interactions between groundwater and the weathered aguifer material in the shallow formations.

Water within the Moranbah Coal Measures is generally saline within the coal seams and moderately saline to saline in the interburden units. Coal seam units of the Moranbah Coal Measures record an average total dissolved solids (TDS) of 7,982mg/L, ranging between 1,314mg/L and 19,200mg/L. The interburden units of the Permian coal measures record an average TDS of 4,747mg/L, ranging between 1,280mg/L and 21,353mg/L.

1.2.5.5 Groundwater use

The Queensland Government's Groundwater Bore Database and the Bureau of Meteorology's National Groundwater Information System indicate there are 82 registered bores within 5km of SSM. Table 9 outlines the numerical split of bores allocated for each functional use.

Table 9: Registered use of groundwater bores within SSM

Groundwater bore use	Count	%
Groundwater monitoring (mine monitoring, water resource investigation etc.)	54	66
Water Supply	9	11
Unknown or resulted from exploration activities	19	23
Total	82	100

Groundwater bores at SSM within saturated units have low yields and have limited potential for beneficial use without prior treatment. Local properties primarily rely on surface water dams and water taken from regional water supply pipelines. Available data on registered water supply bores on surrounding properties indicates where groundwater is extracted it is from the Permian coal seams (Fort Cooper Coal Measures) and not in the Tertiary sands and gravel, confirming the findings of the drilling completed at SSM and other neighbouring BMA sites, which has identified limited saturation within the Tertiary material.

A bore census near to SSM was undertaken in 2004 (AGE, 2004). The census identified that there were three bores that were in private extractive use between 10km and 18km to the east of SSM, adjacent to Rolf Creek. These bores are believed to have accessed the Permian and Tertiary aquifers and were used for stock and potentially domestic purposes. Only one of the three supply bores (Blanch's Bore 90264) identified within the census was registered.

There are no water entitlements for groundwater identified in the Water Entitlements Database Queensland, for within or immediately surrounding SSM, indicating groundwaters in this area are not used for activities requiring a license such as irrigation or other industrial purposes.

Desktop mapping of potential aquatic and terrestrial groundwater dependent ecosystems (GDEs) (GDE Atlas) (BoM, 2017) indicates that areas with possible high, moderate and low potential for groundwater interaction occur in the vicinity of SSM. The GDE Atlas mapped ecosystems are predominantly associated with the watercourses that traverse the site. The potential GDEs in these locations would access temporal groundwaters within the alluvial material or the tertiary sediments. These groundwaters are primarily recharged during runoff events and due to the limited hydraulic conductivity of the Tertiary material and underlying Permian overburden, there is limited potential for groundwater drawdown in the potential GDE locations from the mining activities.

1.2.5.6 Conceptual site model

A hydrogeological conceptual site model representing the conceptual closure landform at the last day of mining at SSM is illustrated in Figure 8. The key hydrogeological features present at the end of mining that are relevant to the discussion of potential groundwater impacts post-mining are:

- Groundwater drawdown within the Moranbah Coal Measures, associated with passive dewatering into the SSM mine pits, results in inwards hydraulic flow gradients in the coal measures
- Mine pits capture any seepage from spoil dumps due to the hydraulic gradient orientated towards the mine void
- No groundwater level drawdown of the alluvium due to the limited extent of continuous alluvial lenses
- Limited groundwater level drawdown in the Tertiary formations due to low hydraulic conductivity of these zones and poor lateral connection
- Limited potential for groundwater level drawdown impacts to potential terrestrial GDEs along Stephens
 Creek and Rolf Creek, where the water table in the regolith material may be accessed by deeper rooted
 riparian species and may be subject to relatively small drawdowns
- · Little to no impact on aquatic environmental receptors
- · No impact on anthropogenic receptors

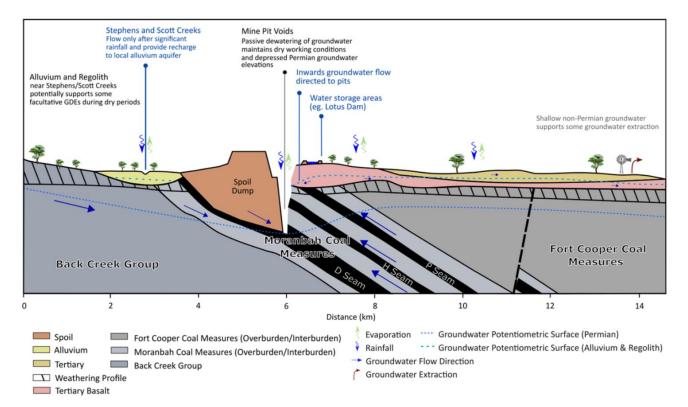


Figure 8: Conceptual site model of SSM at last day of mining (SLR, 2024b)

1.2.6 Soil types, properties and productivity

A number of baseline soil surveys have been undertaken at SSM. The soil information is detailed in *Saraji South Mine Soil and Land Suitability Assessment* (Landloch, 2023a) and *Saraji South Mine Material Characterisation Study* (Landloch, 2023b), provided in Appendix F.

Based on the undisturbed topsoil characteristics, two soil management groups have been identified for rehabilitation, clay topsoil and sand/loam topsoil. A summary of the Australian Soil Classification (ASC), soil type, soil management group and description for the soil types is provided in Table 10. The soil mapping according to the ASC is shown in Figure 9.

The pre-mining land suitability class of the soil types was assessed by Landloch (2023a). The assessment was in accordance with the Guidelines for Agricultural Land Evaluation in Queensland (DSITI & DNRM, 2015) classification system. This system allows for land to be allocated into five possible classes (with land suitability decreasing progressively from Class 1 to Class 5) which are derived from limitations that include soil type. The pre-mining land suitability by soil mapping unit is detailed in Appendix F.

Table 10: SSM baseline soil types

ASC	Soil type	Soil management group	Description	Land suitability class
Vertosol	Gilgaied cracking clays	Clay topsoil	Strongly self-mulching, grey or black cracking clay with developed linear gilgai over unconsolidated, calcareous sediments	2/3
Vertosol	Deep dark clays	Clay topsoil	Self-mulching (sometimes hard setting), black, brown and red-brown cracking clay over unconsolidated, calcareous sediments or alluvial layers	2

ASC	Soil type	Soil management group	Description	Land suitability class
Vertosol, Dermosol	Dark and yellow friable earths with friable brown soils	Clay topsoil	Firm to hard setting, grey sodic cracking clay; over unconsolidated fine sandy clay sediments or reworked acidic Tertiary clay	3
Sodosol	Sandy duplex soils with moderately deep A horizons	Sand/ loam topsoil	Sandy/clay loam surfaced, sporadically bleached, mottled, brown, sodic texture contrast soil with coarse columnar structure; over unconsolidated sandy clay sediments	4/5

Table 11 summarises the chemical and physical parameters of the undisturbed topsoils at SSM. Clay topsoils are commonly alkaline in pH, low to moderate electrical conductivity (EC) and moderate to high cation exchange capacity (CEC). Sand/loam topsoils are commonly neutral in pH, low EC and have a low CEC. Clay soils account for 95% of the samples assessed across SSM.

Table 11: Summary of chemical properties of undisturbed SSM soil types (0 - 0.3m)

	Soil management groups					
Analysis (unit)	Clay	soils	Sand/loam soils			
	Sample 21	Sample 55	Sample 12	Sample 22		
Soil pH (1:5)	8.24	6.41	6.1	7.89		
Soil EC (dS/m)	0.14	0.17	0.03	0.07		
Effective CEC (meq/100g)	54.9	37.6	3.02	15.3		
Exchangeable sodium percentage (ESP) (%Na/CEC)	2.53	7.84	22.9	11.4		
Ca/Mg (ratio)	1.32	0.88	0.9	0.82		
Clay content (%)	>35		<25			
Water holding capacity	Moderate	e to high	Low			

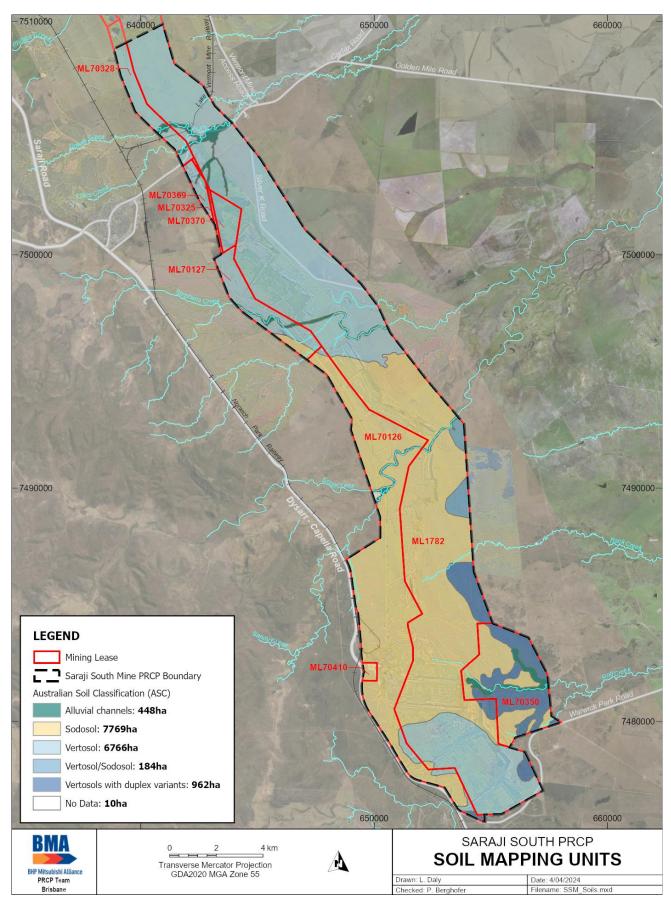


Figure 9: SSM soil mapping units - ASC

1.2.7 Land stability

The pre-mining topography at SSM was generally flat to undulating and is consistent with the regional landscape. Land within SSM that is undisturbed by mining activities and land adjacent to SSM is consistent with land within the Bowen Basin, which indicates surface erosion is common upon disturbance of soils and vegetation from cattle grazing.

1.2.8 Vegetation communities and ecological data

A number of previous baseline and project based ecological studies relating to vegetation communities and ecological values (i.e. regional ecosystems, threatened flora and fauna species and their habitats) have been undertaken within the SSM site including:

- Terrestrial Ecological Assessment of Lands (WBM, 2003) within the proposed East Pit Extension Norwich Park Coal Mine
- Norwich Park Mine Baseline Flora and Fauna Habitat Assessment (WBM, 2004)
- Biodiversity and Threatened Species Action Plan, BMA Norwich Park Mine (EcoServe and LAMR, 2005)
- Ecological Baseline Assessment, Saraji Soft Restart Project (BAAM, 2020)
- Ecological Baseline Assessment, Saraji South Mine (BAAM, 2021).

The results of the ecological studies and the following Queensland Government ecological database searches have been used to describe the ecological values of the SSM site, including the fauna presence and populations (Section 1.2.9):

- Wildlife Online Database (DES, 2023a)
- Regional ecosystem mapping (DES, 2023b)
- Matters of State Environmental Significance mapping (DES, 2023c)
- Maps of environmentally sensitive areas (ESAs) (DES, 2023d)

It is important to note that vegetation clearing and disturbance activities approved within the SSM site may have occurred since the previous ecological assessments.

1.2.8.1 Regional ecosystems

The regional ecosystems (REs) were ground-truthed and mapped as part of the baseline ecological assessment undertaken by BAAM (2021). The remnant vegetation cover on SSM has been altered over time due to premining clearing for agricultural land use purposes and clearing for approved mining activities. The highest disturbance to date is associated with areas previously cleared for cattle grazing in the north of the site, as well as areas cleared for mining activities and associated infrastructure through a central strip of site extending north to south (Figure 10). The remaining areas of remnant and/or high value regrowth (HVR) vegetation on SSM are associated with watercourses, alluvial plains, patches occurring on the undulating Tertiary clay and sand plains to the southeast and patches of remnant vegetation towards the foothills of the Cherwell Range to the west (Figure 10).

The ground-truthed REs mapped during baseline assessments at SSM are listed in Table 12, with their associated *Vegetation Management Act 1999* (VM Act) class and biodiversity status, and have been mapped in Figure 10 (BAAM, 2021).

Table 12: Ground-truthed regional ecosystems recorded during baseline assessments at SSM

RE descriptions	RE Code	Remnant/ HVR	RE VM Act class	RE Biodiversity status
Acacia harpophylla and/or Casuarina cristata open forest on alluvial plains	11.3.1	Remnant HVR	Endangered	Endangered
Eucalyptus populnea woodland on alluvial plains	11.3.2	Remnant HVR	Of concern	Of concern
Eucalyptus coolabah woodland on alluvial plains	11.3.3	Remnant	Of Concern	Of Concern
Eucalyptus tereticornis and/or Eucalyptus spp. woodland on alluvial plains	11.3.4	Remnant	Of concern	Of concern
Eucalyptus tereticornis or E. camaldulensis woodland fringing drainage lines	11.3.25	Remnant	Least concern	Of concern
Eucalyptus coolabah fringing woodland on alluvial plains	11.3.37	Remnant	Least concern	No concern at present
Eucalyptus spp. and/or Corymbia spp. grassy or shrubby woodland on Cainozoic clay plains	11.4.2	Remnant	Of concern	Of concern
Eucalyptus populnea with Acacia harpophylla and/or Casuarina cristata open forest to woodland on Cainozoic clay plains	11.4.7	Remnant	Endangered	Endangered
Eucalyptus cambageana woodland to open forest with Acacia harpophylla or A. argyrodendron on Cainozoic clay plains	11.4.8	Remnant HVR	Endangered	Endangered
Acacia harpophylla shrubby woodland with Terminalia oblongata on Cainozoic clay plains	11.4.9	Remnant HVR	Endangered	Endangered
Eucalyptus orgadophila open woodland on Cainozoic clay plains	11.4.13	Remnant HVR	Least concern	Of concern
Eucalyptus crebra, Corymbia spp., with E. moluccana woodland on lower slopes of Cainozoic sand plains and/or remnant surfaces	11.5.2	Remnant	Least concern	No concern at present
Eucalyptus populnea and/or E. melanophloia and/or Corymbia clarksoniana on Cainozoic sand plains and/or remnant surfaces	11.5.3	Remnant HVR	Least concern	No concern at present
Eucalyptus crebra and other Eucalyptus spp. and Corymbia spp. woodland on Cainozoic sand plains and/or remnant surfaces	11.5.9	Remnant	Least concern	No concern at present

RE descriptions	RE Code	Remnant/ HVR	RE VM Act class	RE Biodiversity status
Eucalyptus orgadophila open woodland on Cainozoic igneous rocks	11.8.5	Remnant	Least concern	No concern at present
Eucalyptus brownii or Eucalyptus populnea woodland on Cainozoic igneous rocks	11.8.15	Remnant	Endangered	Endangered
Eucalyptus populnea, Eremophila mitchellii shrubby woodland on fine-grained sedimentary rocks	11.9.7	Remnant	Of concern	Of concern
Acacia shirleyi or A. catenulata open forest on coarse-grained sedimentary rocks. Crests and scarps	11.10.3	Remnant	Least concern	No concern at present
Eucalyptus crebra woodland on coarse- grained sedimentary rocks	11.10.7	Remnant	Least concern	No concern at present
Eucalyptus populnea woodland on medium to coarse-grained sedimentary rocks	11.10.12	Remnant	Least concern	No concern at present

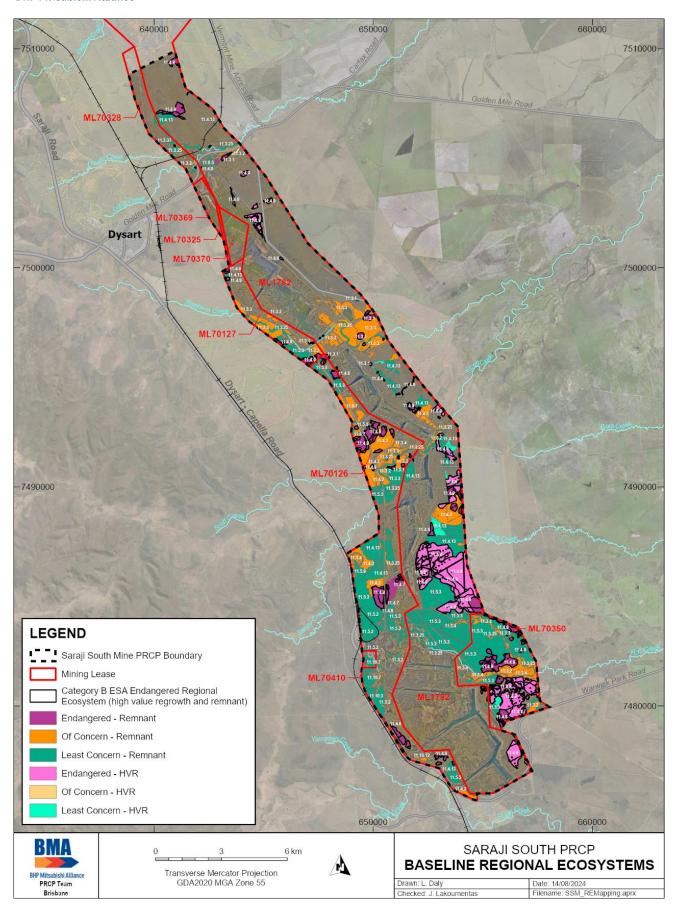


Figure 10: SSM Baseline regional ecosystems and environmentally sensitive areas

1.2.8.2 Environmentally sensitive areas

Category B ESAs are defined under Schedule 19 of the *Environmental Protection Regulation 2019* to include Endangered REs based on the biodiversity status identified in the 'Regional ecosystem description database' (Queensland Herbarium, 2018).

The following REs with an Endangered biodiversity status have been ground-truthed on SSM in association with Category B ESAs (BAAM, 2021) (Figure 10):

- RE 11.3.1 Acacia harpophylla and/or Casuarina cristata open forest on alluvial plains
- RE 11.4.7 Eucalyptus populnea with Acacia harpophylla and/or Casuarina cristata open forest to woodland on Cainozoic clay plains
- RE 11.4.8 Eucalyptus cambageana woodland to open forest with Acacia harpophylla or A. argyrodendron on Cainozoic clay plains
- RE 11.4.9 Acacia harpophylla shrubby open forest to woodland with Terminalia oblongata on Cainozoic clay plains
- RE 11.8.15 Eucalyptus brownii or Eucalyptus populnea woodland on Cainozoic igneous rocks

1.2.8.3 State significant threatened flora species

The following threatened state significant flora species under the *Nature Conservation Act 1992* (NC Act) have been recorded on SSM based on the results of pervious ecological surveys:

Solanum adenophorum (Endangered NC Act) (BAAM, 2021)

The presence of Solanum adenophorum was confirmed within a patch of regrowth RE 11.4.9 in the south-east portion of the site south of Rolf Creek (BAAM, 2021) (Figure 10).

No other threatened flora species listed under the NC Act have been recorded on site during previous ecological surveys.

1.2.9 Fauna presence and populations

1.2.9.1 State significant fauna species

Fauna habitat on SSM has been influenced by previous clearing for agriculture and mining, with higher value habitat associated with larger areas of intact remnant vegetation (EcoServe and LAMR, 2005) (Figure 10).

The following threatened fauna species under the NC Act are known to occur on SSM based on the results of pervious ecological surveys:

- Koala (Phascolarctos cinereus) (Endangered NC Act) (EcoServe and LAMR, 2005; WBM, 2004; BAAM, 2020; BAAM, 2021)
- Central greater glider (Petauroides volans) (Endangered NC Act) (BAAM, 2020; BAAM, 2021)
- Ornamental snake (Denisonia maculata) (Vulnerable NC Act) (EcoServe and LAMR, 2005; BAAM, 2021)
- Squatter pigeon (southern) (Geophaps scripta scripta) (Vulnerable NC Act) (EcoServe and LAMR, 2005; WBM, 2003; BAAM, 2020; BAAM, 2021)
- Grey falcon (Falco hypoleucos) (Vulnerable NC Act) (WBM, 2004; BAAM, 2021)
- Caspian tern (Hydroprogne caspia) (Special least concern NC Act) (EcoServe and LAMR, 2005)
- Latham's snipe (Gallinago hardwickii) (Special least concern NC Act) (EcoServe and LAMR, 2005)
- White-throated needletail (Hirundapus caudacutus) (Vulnerable NC Act) (EcoServe and LAMR, 2005)
- Short beaked echidna (Tachyglossus aculeatus) (Special least concern NC Act) (EcoServe and LAMR, 2005; WBM, 2004; WBM, 2003; BAAM, 2021)

Koalas have been recorded within riparian forests and woodlands in the northern section of the SSM site and along Stephens and Sandy creeks (WBM, 2004; BAAM, 2021). Evidence of koala scats have also been detected within preferred habitat associated with eucalypt forests and woodland containing a good diversity of preferred koala feed tree species including Eucalyptus camaldulensis, E. tereticornis, E. populnea, E. coolabah and E. orgadophila. Koala habitat on SSM has been mapped on Figure 11 in association with eucalypt open forests and woodlands with known food trees and areas known to be used as movement corridors (WBM, 2004; BAAM, 2021).

The central greater glider has been recorded within preferred habitat in the northern section of SSM along Downs Creek (BAAM, 2020), as well as along Sandy Creek (BAAM, 2021). Preferred habitat for the greater glider has been mapped in Figure 11 and includes remnant eucalypt woodlands with habitat connectivity containing more than two hollow bearing trees per hectare, with hollows medium-large in size (>10cm entrance) (BAAM, 2021). Preferred foraging and den trees include *E. camaldulensis*, *E. tereticornis*, *E. fibrosa* and *Corymbia citriodora* (Kerswell A, 2020).

The ornamental snake has been recorded on SSM in association with regenerating brigalow with gilgai formations in the south (WBM, 2004) (Figure 12). Preferred habitat for ornamental snake includes areas currently or previously dominated by brigalow or coolibah communities with gilgai micro-relief and/or deep soil cracks (BAAM, 2021).

Squatter pigeons have been observed during surveys in 2003, 2020 and 2021 (WBM, 2003; BAAM, 2020; BAAM, 2021). Squatter pigeon habitat has been mapped on SSM in association with remnant and regrowth eucalypt dominated REs within 1km of suitable water sources, including larger watercourses and waterbodies that hold pools of water for extended periods (BAAM, 2021) (Figure 12).

The grey falcon has previously been recorded within the local district; however its local occurrence could only be regarded as rare and nomadic (WBM, 2004). The grey falcon has been observed hunting in treeless areas and frequents timbered lowland plains, particularly acacia shrublands that are crossed by tree-lined watercourses, and tussock grassland and open woodland especially in winter (BAAM, 2021) (Figure 12).

The Caspian tern and Latham's snipe were recorded during baseline water bird surveys with records on Murphy dam and old tailings dam (WBM, 2004). The white-throated needletail is a highly mobile species and may occur in air space over parts of SSM (WBM, 2004).

The short-beaked echidna has been recorded across the SSM site (WBM, 2004). The short-beaked echidna is a dietary specialist having few specific habitat requirements other than the supply of ants and termites and suitable refuge sites (e.g. sites under dense bushes, in hollow logs and deserted burrows). This species occurs in a wide range of habitats and is likely to occupy remnant and regrowth habitats within SSM site (BAAM, 2021) (Figure 10).

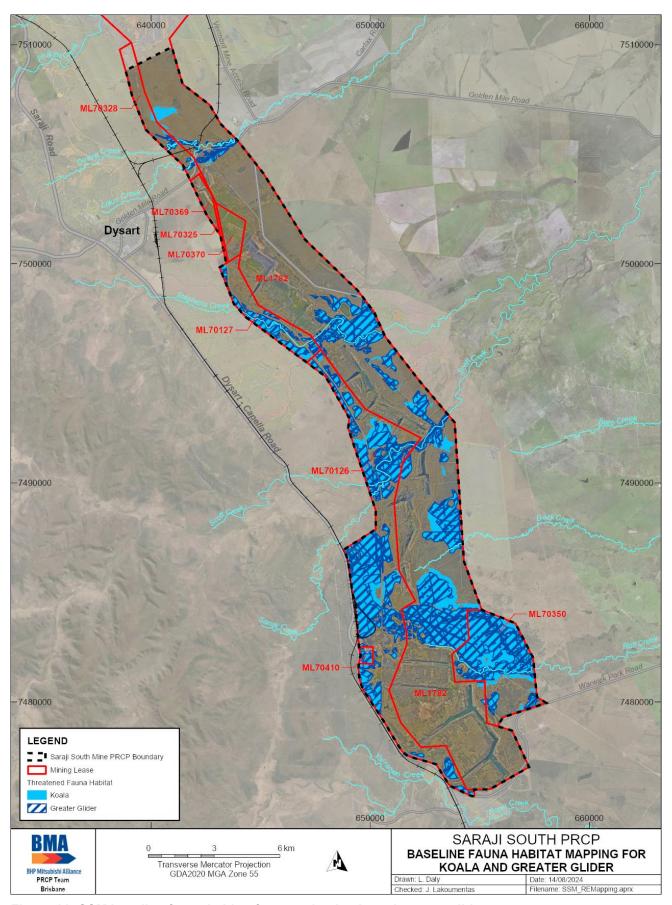


Figure 11: SSM baseline fauna habitat for mapping koala and greater glider

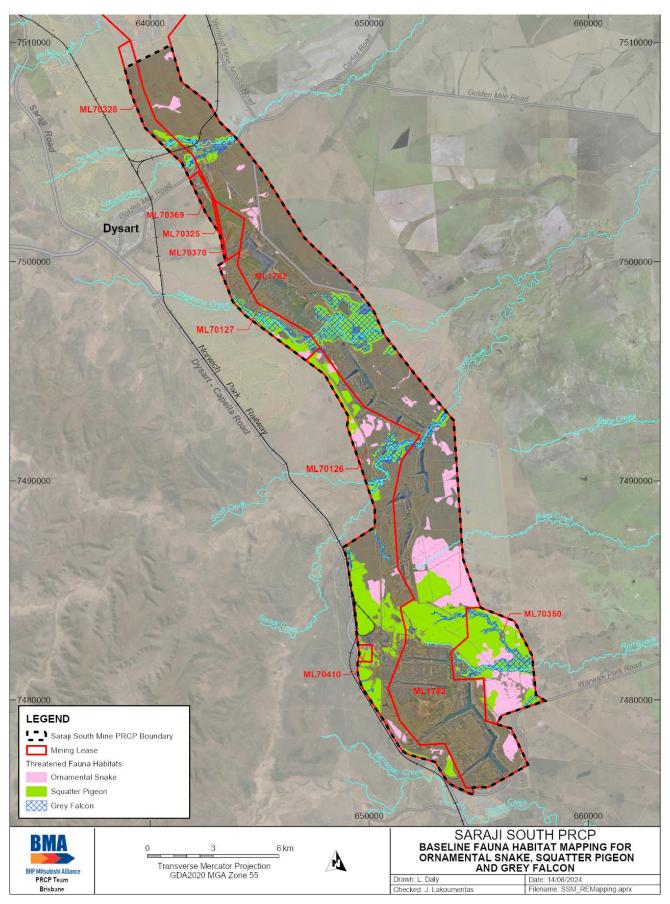


Figure 12: SSM baseline fauna habitat for ornamental snake, squatter pigeon and grey falcon

1.2.10 Pre-mining land use

Prior to mining, the SSM site was predominantly used for cattle grazing. A review of publicly accessible Queensland Government aerial images for the SSM area prior to mining (Cotherstone, 1978) (Queensland Government, 2024) indicates significant clearing of native vegetation, with only some remnant tracts of vegetation currently remaining within SSM.

The aerial images did not indicate any cropping prior to mining; however cropping is currently undertaken within ML1782, predominately within the nil surface area to the east of Silver K Road, with small portions also to the north-west and south of Silver K Road. Cropping is also undertaken on areas surrounding SSM.

1.2.10.1 Strategic cropping land

Under the Regional Planning Interests Act 2014, strategic cropping land (SCL) "means land that is, or is likely to be, highly suitable for cropping because of a combination of the land's soil, climate and landscape features". The SCL trigger map published by the Department of Resources (DoR) indicates the location of land that is expected to be SCL. An on-ground assessment against the SCL criteria is required to confirm the actual extent of SCL. Based on the outcome of the assessment, an application can be made to amend the SCL trigger map to remove or add land.

The SCL trigger map shows SCL mapped over a number of areas predominately in the north of the site. An onground assessment of the SCL trigger map areas at SSM has not been undertaken to verify the actual extent of land suitable for cropping. Of the mapped SCL locations within the SSM ML surface area, only a small portion is currently cropped.

1.2.11 Contaminated land

Mining operations at SSM commenced in 1979, prior to the inclusion of modern environmental legislative requirements and standards. Therefore, pre-mining baseline contaminated land data and records pertaining to historical environmental incidents/management from the earlier SSM operations are not available.

Operations at SSM have included heavy industrial type activities and supporting infrastructure since the commencement of mining/exploration, including the following:

- Drilling/exploration
- · Extraction and processing of coal
- · Operation of a variety of plant/equipment workshops and scrap yards
- Operation of regulated structures such as TSFs and other dams
- Operation of landfills
- Chemical storage
- Sewage treatment
- Petroleum product storage

The nature of these types of operations, which include the storage, handling, use and disposal of hazardous materials, particularly over SSM's historical operations, have the potential to result in contamination of land.

Select properties covered by the SSM EA are listed on the Queensland Environmental Management Register for a range of notifiable activities including:

- Abrasive blasting
- Chemical storage
- Electrical transformers
- Engine reconditioning works
- Landfill
- Mine wastes
- Petroleum product or oil storage

No properties covered by the SSM EA are known to be listed on the Queensland Contaminated Land Register or to have approved Site Management Plans.

The current SSM EA provides for the conditional on-site disposal of various wastes including:

- Bulk rubber
- Inert waste
- Poly-pipe and other plastics
- Fibreglass
- Treated and untreated timber
- Asphalt
- Asbestos
- Rejects
- Sediment or water containing hydrocarbons
- Tailings
- Spoil or overburden
- Vegetation

Current management of contaminated land is undertaken in accordance with EP Act 1994 and the EA conditions that require the reporting of releases of hazardous contaminants and monitoring of surface water, sediment and groundwater on a regular basis. However, historical practices are not well documented due to the age of operations. Based on the nature of site operations/licenced activities and historical practices, it is anticipated that waste disposal and other activities have occurred at the site that potentially have resulted in land contamination that will require ongoing management post-mining.

1.2.12 Underlying landholders

The majority of land within SSM is BMA and/or related companies freehold and leasehold land except for:

- Land within ML1782 (northern section), ML70369, ML70370, ML70126 (west section), owned by Cradcorp Pty Ltd
- A small section of land within ML1782 (eastern section), owned by private landholders
- Lake Vermont Railway within ML1782 and ML70328, owned by Bowen Basin Coal Pty Ltd
- SSM rail loop land within ML70126, owned by Queensland Rail (QR)
- Various road reserves, owned by Isaac Regional Council (IRC)

The underlying landholders for the SSM area are shown in Figure 13. BMA has agreements and surface area rights under the *Mineral Resources Act 1989* for a substantial portion of the non-BMA owned land enabling BMA to control the land and undertake mining activities with conditions.

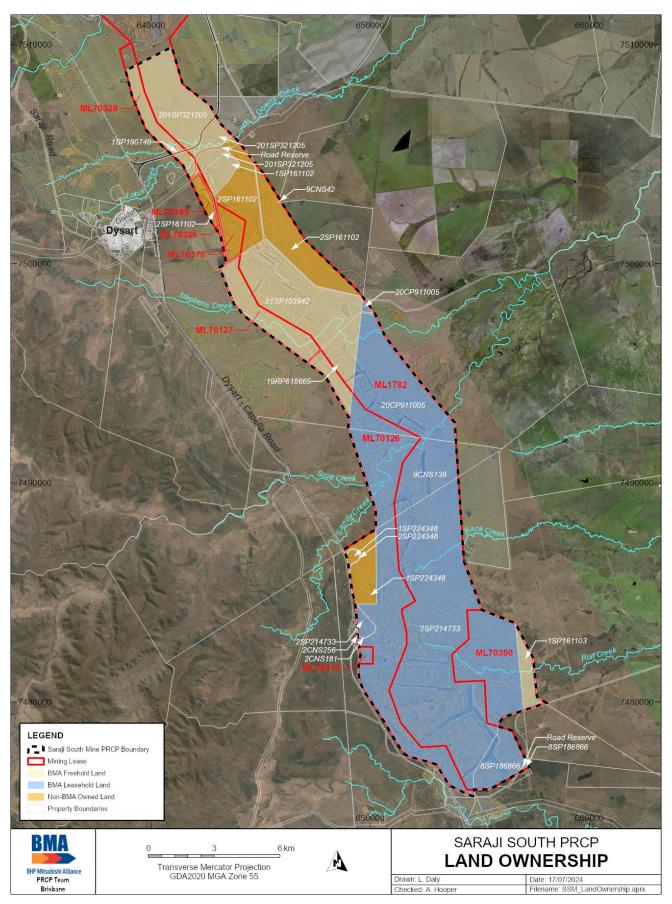


Figure 13: SSM land ownership

1.3 Design for closure

As this PRCP for SSM is subject to transitional PRCP arrangements, it is not required to demonstrate how aspects of the mine site have been designed for closure for existing or approved disturbance (PRCP Guideline, Section 3.1).

However, this PRCP has been developed to manage progressive rehabilitation of the SSM site, aiming to minimise long-term management requirements as well as associated closure costs. Importantly, a focused design for closure underpins all sections of this plan, including:

- Engagement with relevant stakeholders to define suitable PMLUs and NUMAs
- Defining and implementing rehabilitation practices based on scientific studies and data, as well as identified risks that could influence achievement of milestone criteria
- Demonstrating a successful rehabilitation trajectory towards achievement of these milestone criteria by ongoing site monitoring and maintenance

1.4 Rehabilitation and improvement planning

Legislative Requirement

In accordance with sections 126C(1)(b) and (c)(ii) of the EP Act, the rehabilitation planning part must include:

- identification of all relevant activities on the mine site
- the predicted duration of each of the relevant activities proposed for the mine site
- the size/extent of the relevant activities
- whether the different relevant activities can be progressively rehabilitated.

PRCP Guideline (Section 3.1)

Under section 126C(1)(j) of the EP Act, transitional PRC Plans must also include the following details about any existing rehabilitation already completed at the time of submission of the proposed PRC Plan:

- a description of the rehabilitation works previously carried out
- when the rehabilitation works commenced and were completed
- whether the rehabilitation has been applied for or approved as progressively certified under the EP Act.

1.4.1 Relevant activities requiring rehabilitation

The relevant activities and BMA owned infrastructure at SSM that will require rehabilitation, the predicted duration and availability for progressive rehabilitation, are provided in Table 13. Any infrastructure that is beneficial to the PMLU may be retained at closure and will not be available for rehabilitation.

Table 13: Relevant activities requiring rehabilitation at SSM

Relevant activity	Predicted duration	Availability for progressive rehabilitation
Spoil dumps	Dumping to spoil dumps will continue in active pits until the end of mining in 2098	 Progressive rehabilitation has commenced Available for progressive rehabilitation as dump areas reach final position and they are no longer required for associated infrastructure or access requirements
		 Roper Pit spoil dumps are available for progressive rehabilitation now as there is no further mining planned in this pit – refer to Section 1.4.1.2

Relevant activity	Predicted duration	Availability for progressive rehabilitation
		Price Pit spoil dumps are available for progressive rehabilitation now as there is no further mining planned in this pit
		Progressive rehabilitation is maximised by scheduling rehabilitation as soon as practicable after land becomes available
		Low-wall areas become available once mining in each pit is complete
		86% of the spoil dump area is scheduled to be rehabilitated to revegetation by the end of mining at SSM
MIA and other infrastructure areas	Varying: with the latest utilised until the end of rehabilitation activities	Dependent on the use and location, or unless deemed suitable to be retained for the PMLU: the majority will be available for rehabilitation at the end of the major rehabilitation activities; some areas may be available earlier, such as at the end of mining
Mine dams	Varying: with the latest utilised until the end of rehabilitation activities	Available for rehabilitation when no longer required for water management
Train load-out; associated infrastructure; and rail line (BMA owned)	Utilised until the end of coal loading	Infrastructure is not currently being utilised but life- of-mine plans indicate the infrastructure may be utilised in the future
Roads; laydown and general disturbance	Varying: with the latest utilised until the end of rehabilitation activities	Dependent on the use and location, or unless deemed suitable to be retained for the PMLU: typically areas will be available for rehabilitation either at the end of mining or after the major rehabilitation activities are complete
Exploration	Throughout the operational life	Available for rehabilitation once exploration activities are complete
Diversions and crossings	Varying: with the latest utilised until the end of rehabilitation activities	Dependent on the location in relation to mining and closure activities: typically crossings will be available for rehabilitation at the end of the major rehabilitation activities; some may be available earlier, such as at the end of mining
TSFs and rejects	Complete	OTD TSF is no longer being utilised and is available for progressive rehabilitation now
		Ramp 67 TSF is located within a void which is being utilised for operational water storage as part of the BMA central region water network and is therefore only available for rehabilitation when water storage capacity is no longer
		Ramp 67/68 rejects is partly located within a void which is being utilised for operational water storage as part of the BMA central region water

Relevant activity	Predicted duration	Availability for progressive rehabilitation
		network and partly within spoil areas that are available for rehabilitation now
Residual voids	Utilised for mining or water storage until the end of mining	All voids not currently being mined are utilised for water storage as part of the BMA central region water network
		Available for improvement once mining, water storage and the PMLU low-wall spoil rehabilitation (RA1) is complete for each pit, and any partial backfill for flood mitigation is complete

Further details on the availability of areas for progressive rehabilitation are included in Section 1.4.5. Non-BMA owned infrastructure, where BMA is not liable for rehabilitation, is not covered in the PRCP.

1.4.1.1 EA progressive rehabilitation conditions

The SSM EA includes the following condition regarding the commencement of progressive rehabilitation:

• E4: "Progressive rehabilitation must commence within two (2) years of when areas become available within the mining leases."

All areas are included in the PRCP schedule for rehabilitation as soon as practicable after land becomes available. For infrastructure and general disturbance areas being utilised throughout the mine life, rehabilitation is scheduled the year after the land becomes available to allow for final planning. Spoil dump areas being utilised for ongoing dumping are scheduled within two years after land becomes available to allow for final settlement, planning and availability of resources (as per EA condition E4).

1.4.1.2 Roper area

The Roper Pit and immediate surrounds, located at the southern end of SSM, was actively mined and used for tailings and rejects disposal until the mine was placed in care and maintenance in 2012. Various options for the restart of mining operations were considered from 2012 onwards and in 2022 mining activity commenced in the northern part of the mine. The current BMA life-of-mine plan indicates there is no future coal mining planned in the Roper area. The Roper residual voids are currently, and will continue to be, utilised as part of the BMA central region water management network. The residual voids provide storage capacity during wet weather and provide water to sustain operations during prolonged periods of drought.

The Roper areas outside the Roper residual voids are therefore currently available for rehabilitation. The areas available for rehabilitation include: OTD TSF, rejects, mine affected water dams, spoil dumps, haul roads and drainage lines. The Roper residual voids utilised as part of the BMA central region water network are not currently available for rehabilitation.

The technical studies completed for the transitional PRCP have highlighted the complexity and interconnectedness of this large area, therefore the residual voids must be considered with the surrounding available for rehabilitation areas, when assessing risk and developing the detailed rehabilitation and management plan for the area. The study outcomes identified knowledge base gaps and associated uncertainties, which include, but are not limited to:

- Limited groundwater data to produce modelling outputs with an appropriate level of calibration and uncertainty (Section 6.1.1 and Appendix E)
- Limited geochemical data to assess tailings and rejects geochemical risk (Section 6.1.3)
- Limited tailings characterisation data to enable development of detailed cover designs (Sections 6.1.6 and 6.2.3)
- Uncertain inputs into the final closure landform design, including catchments, until the knowledge base gaps are addressed (Sections 6.1.5 and 6.1.7)
- Unknown potential contaminant pathways (6.1.7.2)

- Limited understanding of the interconnectivity of the residual voids (Section 6.3.2)
- Uncertainty in modelled void lake levels due to appropriate alignment with the groundwater model not being achieved for the Roper voids (Section 6.3.2)
- Management methods for large scale leucaena, as in the Roper area, are unknown in the industry (Section 1.4.4)

As detailed in the Knowledge Base Refinement section, guidance from government and industry bodies indicate that an adequate knowledge base is essential for successful closure and to achieve a stable condition. The risk assessment (Section 7.1.3) identifies the risks associated with the knowledge base gaps and the associated uncertainties listed above, and the controls to mitigate the risks. These controls include sourcing sufficient data to close the knowledge base gaps and undertaking the necessary ground works and technical studies to achieve a sufficient level of certainty in the models. The area requiring these controls, the Roper area, has been delineated by separate RAs, that encompass the Roper spoil dumps, residual voids and surrounding areas (Figure 14).

The Roper area is available for rehabilitation, but it is not yet practicable to carry out rehabilitation. The PRC plan outlines how the Roper area will be rehabilitated as soon as practicable by stepping out what is to occur in the period between the present, to the point in time when it will be practicable to commence the first rehabilitation milestone, by:

- Closing the critical knowledge base gaps
- Developing a closure plan that manages risks and achieves a stable condition at closure

For the Roper area, the as soon as practicable timing to commence the first rehabilitation milestone is 10 years due to the size of the area, the complexity and interconnectivity of the domains, and the time needed to implement the controls identified in the risk assessment. The recommended work to inform a detailed closure plan that achieves a stable condition, and justification of the timing to commence the first rehabilitation milestone are detailed in the applicable sections of the PRC plan. It is important to note that the individual work packages may take less than 10 years to complete, but due to the schedule interdependencies, the critical path to develop a detailed closure plan for the area is a total of 10 years.

Commencement of progressive rehabilitation earlier than practicable would be contrary to the purposes of the EP Act to achieve land to a stable condition and management of NUMAs to minimise environmental harm. It would result in potential for worse environmental outcomes and millions of wasted spend, wasted resources and greenhouse gas emissions on rehabilitation that has not managed the risks.

A PRCP amendment would be submitted to the administering authority, if through implementing the controls, any changes are required to the PRCP schedule, such as changes to the PMLU or NUMA locations or extents, or the rehabilitation and/or management criteria for the Roper area.

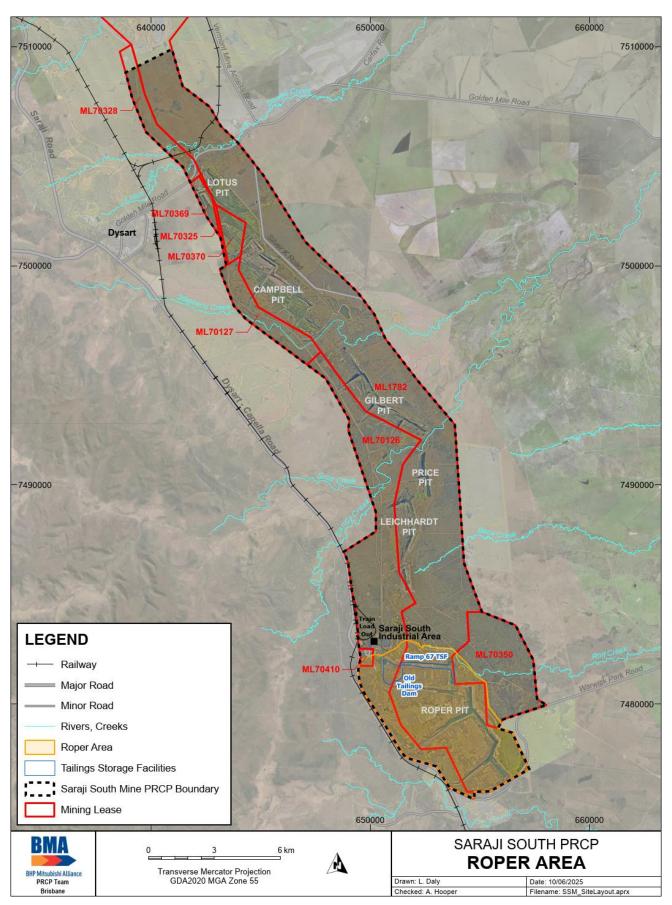


Figure 14: Roper area

1.4.2 Rehabilitation areas and milestones

The RAs and RMs included in the PRCP schedule for SSM are referred to throughout this PRCP.

A RA is defined in the PRCP Guideline "as an area of land in the post-mine land use to which a rehabilitation milestone for the post-mining use relates" and a RM is "each significant event or step necessary to rehabilitate the land to a stable condition (section 112 of the EP Act)".

The SSM RAs, as well as the relevant activities associated with each RA, are detailed in Table 14 and shown in Figure 28. The RMs are detailed in Table 15. As required by the PRCP Guideline, only PMLU areas where disturbance has occurred or will occur, are mapped as a RA. Areas of ML1782, ML70328, ML70369, ML70126, ML70350, including the nil surface areas (Figure 2), and undisturbed creek areas are expected to remain undisturbed as part of this transitional PRCP, and are therefore not mapped as a RA.

To support ongoing operations, exploration and minor ancillary activities may be required in areas not mapped as a RA. Minor ancillary activities can occur without a PRCP amendment and may include roads, access tracks and culverts, fences, underground services, low-impact telecommunication facilities, electrical sub-stations and switch yards, transmission grid works and supply network works, storage depots, pipelines and pumps, groundwater bores, gas drainage bores, monitoring and investigation works and exploration activities (as agreed with the administering authority for the SRM PRCP schedule). Disturbance must be rehabilitated in accordance with the provisions detailed in the *Eligibility criteria and standard conditions for exploration and mineral development projects* (DEHP, 2016) or its successor, with the exception that land must be rehabilitated to a stable condition and achieve the proposed PMLU.

Table 14: Rehabilitation areas and relevant activities for SSM

RA*	PMLU	Relevant activity
RA1	Woodland habitat	Spoil dumps (Lotus/Campbell, Gilbert, Price/Leichhardt and East pits)
RA2	Watercourse	Creek/surface water diversionsWatercourse crossings
RA3	Cattle grazing	 Roads Laydown areas MIA Train load-out, rail and associated infrastructure General infrastructure and disturbance
RA4	Woodland habitat	ExplorationRoadsLaydown areasGeneral infrastructure and disturbance
RA7	Cattle grazing	Existing rehabilitation
RA10	Woodland habitat	Existing rehabilitation
RA12	Woodland habitat	Roper area - spoil dumps
RA13	Cattle grazing	Roper area - spoil dumps
RA14	Cattle grazing	Roper area: Roads

RA*	PMLU	Relevant activity			
		- Dams			
		 Laydown areas 			
		General infrastructure and disturbance			
RA15	Woodland habitat	Roper area:			
		- Roads			
		 Laydown areas 			
		General infrastructure and disturbance			
RA16	Grassland	Roper area:			
		- TSFs			
		- Rejects areas			
RA17	Cattle grazing	Roper area - existing rehabilitation			
RA18	Woodland habitat	Roper area - existing rehabilitation			
RA19	Cattle grazing	Roper area - certified rehabilitation			

^{*} BMA uses a consistent set of RAs across their assets, and as such some RA numbers are not relevant at SSM

Table 15: Rehabilitation milestones for SSM

RM	RM name		
RM1	Infrastructure decommissioning and removal		
RM2	Remediation and/or management of contaminated land		
RM3	Landform development and reshaping		
RM4	Surface preparation (cattle grazing and grassland)		
RM5	Surface preparation (woodland habitat)		
RM6	Surface preparation (watercourse)		
RM7	Revegetation (cattle grazing and grassland)		
RM8	Revegetation (woodland habitat)		
RM9	Revegetation (watercourse)		
RM10	Achievement of surface requirements (cattle grazing)		
RM11	Achievement of surface requirements (woodland habitat)		
RM12	Achievement of surface requirements (watercourse)		
RM13	Achievement of post-mining land use to a stable condition (cattle grazing – RA3, RA13, RA14)		

RM	RM name		
RM14	Achievement of post-mining land use to a stable condition (woodland habitat – RA1, RA4, RA12, RA15)		
RM15	Achievement of post-mining land use to a stable condition (watercourse – RA2)		
RM17	Achievement of post-mining land use to a stable condition (cattle grazing existing rehabilitation – RA7, RA17)		
RM18	Achievement of post-mining land use to a stable condition (woodland habitat existing rehabilitation – RA10, RA18)		
RM19	Achievement of surface requirements (grassland)		
RM20	Achievement of post-mining land use to a stable condition (grassland – RA16)		

1.4.3 Improvement areas and milestones

The IAs and MMs included in the PRCP schedule for SSM are referred to throughout this PRCP.

An IA is defined in the PRCP Guideline as an "area of land in the NUMA to which a management milestone for the NUMA relates" and a MM is "each significant event or step necessary to achieve best practice management of the area and to minimise risks to the environment (section 112 of the EP Act)".

The SSM IAs and associated relevant activities are detailed in Table 16 and the MMs are detailed in Table 17.

Table 16: Improvement areas and relevant activities for SSM

IA	NUMA	Relevant activity		
IA1	NUMA	Residual voids		
IA2	NUMA	Roper area - residual voids		

Table 17: Management milestones for SSM

MM	MM name		
MM1	Achievement of structural stability		
MM2	Achievement of surface requirements		
ММ3	Achievement of sufficient improvement		

1.4.4 Existing rehabilitation

Ongoing rehabilitation activities at SSM have occurred since 1986. Prior to 2018, the majority of rehabilitation was revegetated to achieve a cattle grazing PMLU. More recently, spoil dump rehabilitation has planned to achieve a woodland habitat PMLU by applying varied rehabilitation methods, including revegetation without the application of topsoil.

The PRCP schedule includes 1,245ha of existing rehabilitation as progressed, comprising of 1,139ha of existing cattle grazing PMLU, which includes 294ha of certified rehabilitation, and 106ha of woodland habitat PMLU. The existing rehabilitation progressing towards achievement of the PMLU is scheduled in the PRCP schedule for the next appropriate rehabilitation milestone as shown in Table 18.

Several areas of existing rehabilitation have not been included in the schedule for the following reasons:

- Areas are planned to be dumped over in the current life-of-mine plans for additional spoil dump capacity, however once the final landform surface is available, the spoil will be progressively rehabilitated to achieve a sustainable woodland habitat PMLU
- Other areas will be re-disturbed by various mining activities, such as infrastructure. These areas are scheduled to be rehabilitated once the areas are no longer required for mining activities or infrastructure
- Some areas rehabilitated in the 1990s have extensive leucaena (*Leucaena leucocephala*) thickets. Rehabilitation seed mixes in the 1990s included leucaena as it was considered suited to the soils, provided soil stabilisation and was planted for cattle fodder (leucaena stems less than 2m high can be readily eaten by grazing livestock). However, if not controlled, leucaena can form dense thickets that hinder human and stock movements and exclude growth of other plants. Rehabilitation areas where maintenance activities to control leucaena are likely be to unsuccessful due to the density of leucaena have been excluded.
- A portion of historical rehabilitation requires substantial corrective action to achieve the nominated PMLUs, and in some cases the planned PMLU has changed to better align with the landforms and surrounding PMLUs. These areas are scheduled to commence rehabilitation in the PRCP schedule over the first 10 years.

Table 18: Progression of existing rehabilitation to the next rehabilitation milestone in the PRCP schedule

RA	Cattle Grazing (ha)		Woodland Habitat (ha)		
	RM10	Certified	RM8	RM11	
RA7	361				
RA10			17	46	
RA17	483				
RA18			43		
RA19		294			
Total	844	294	60	46	

The majority of existing rehabilitation is over 10 years old and was undertaken before the inclusion of the rehabilitation acceptance criteria in the EA in 2018. Existing cattle grazing rehabilitation areas are predominantly on landforms with slopes ≤10% and are dominated by exotic pasture grass (i.e. *Cenchrus ciliaris*) with scattered native trees species (i.e. *Acacia spp.* and *Corymbia spp.*). The existing areas of woodland habitat rehabilitation are on a range of landforms with native trees, shrubs and grasses and exotic grasses.

Representative areas of existing cattle grazing and woodland habitat rehabilitation and their associated monitoring results have been summarised in Table 19 and Table 20, respectively.

The rehabilitation methodology of the existing SSM rehabilitation areas is most aligned to the following PRCP rehabilitation milestones:

Cattle grazing:

- RM3: Reshaped to maximum slope of 12%, however most areas have a mean slope up to 10%
- RM4: Application of topsoil at minimum depth of 150mm
- RM4: Application of ameliorants, such as gypsum and fertiliser
- RM4: Shallow rip
- RM4: More recent rehabilitation has included application of surface mulch, such as straw as part of the physical treatments
- RM7: Seed mixes were based on seasonal availability, no records are available on specific seed species. Leucaena was included in the seed mixes in the 1990s.

Woodland habitat:

- RM3: Reshaped to a mean slope of 12%

- RM5: A thin veneer of topsoil (100mm 150mm), or no topsoil application
- RM5: Application of ameliorants, such as gypsum
- RM5: Deep rip
- RM5: More recent rehabilitation has included application of surface mulch, such as straw as part of the physical treatments
- RM8: Seed mixes were based on seasonal availability, no records are available on specific seed species

Routine rehabilitation monitoring will continue to be implemented to identify any maintenance/corrective actions required to enable the existing rehabilitation areas to achieve the milestone criteria.

Table 19: Representative areas of existing cattle grazing rehabilitation (monitored in 2022)

Area	SSM03	SSM13	
Image			
Next RM in PRCP schedule	RM10	RM10	
Coordinates (MGA2020 Zone 55)	651389 E, 7478744 N	643713 E, 7498928 N	
Mean slope (%)	12	9	
Age (years)	33	11	
Total groundcover (%)	94	100	
Vegetation groundcover (%)	94	94	
Preferred pasture species	Cenchrus ciliaris (buffel grass*), Megathyrsus maximus var. maximus (Guinea grass*), Melinis repens (red natal grass*)	Cenchrus ciliaris (buffel grass*), Clitoria ternatea (butterfly pea*), Megathyrsus maximus var. maximus (Guinea grass*), Melinis repens (red natal grass*)	
Leucaena density (stems >2m high per ha)	0	60	
Dry matter yield (kg/ha)	6,617	4,750	
Pasture condition	1	1	
Land condition	B - Fair	A - Good	
Land suitability class	3	4	
Limiting factors	Strongly alkaline, strongly sodic. Low P	Sodic, very low P	

^{*} Exotic species

Table 20: Representative area of existing woodland habitat rehabilitation (monitored in 2022)

Area	SSM17			
Image				
Next RM in PRCP schedule	RM11			
Coordinates (MGA2020 Zone 55)	651217 E, 7489803 N			
Mean slope (%)	7			
Age (years)	17			
Total groundcover (%)	95			
Vegetation groundcover (%)	74			
Tree canopy cover (%)	12			
Tree species	Acacia sp., Corymbia dallachiana (Dallachy's gum), Eucalyptus crebra (narrow leaved ironbark)			
Shrub species	Acacia leiocalyx (black wattle), Acacia macradenia (Zig-zag wattle), Acac salicina (sally wattle), Eucalyptus crebra (narrow-leaved ironbark)			
Grasses	Cenchrus ciliaris (buffel grass*), Megathyrsus maximus var. maximus (Guinea grass*), melinis repens (red natal grass*)			
Other species	Achyranthes aspera (prickly-chaff flower), bidens pilosa* (cobblers pegs), malvastrum americanum (spiked malvastrum*), parthenium hysterophorus (parthenium*), parkinsonia aculeata (parkinsonia*)			

^{*} Exotic species

There are areas of existing rehabilitation within the Roper area progressing towards achievement of the PMLU (RA17, RA18 and RA19). Monitoring and maintenance activities (as per Section 8) will continue to be undertaken to progress the rehabilitation to the next scheduled rehabilitation milestone. Initial maintenance activities for these areas will focus on leucaena management, including investigating management options, developing a plan and implementing large scale leucaena management. The required leucaena management is extensive and may be intrusive.

Due to the interconnectivity of the Roper area, the outcomes of implementing the risk controls, including management of leucaena, may change the status of the existing rehabilitation within the Roper area and potentially require a PRCP amendment.

1.4.5 Availability for progressive rehabilitation

1.4.5.1 Spoil dumps

As indicated in Table 13, the spoil dumps utilised for ongoing dumping are the area predominantly available for progressive rehabilitation during mining. As mining progresses down-dip and the pits get deeper, the spoil dumps increase in height to fit the increased volume of spoil material. Increasing the dump height maximises the material dumped in-pit and reduces out-of-pit dumping. Due to the large size of the SSM spoil dumps, the outside spoil dump areas (the areas to be rehabilitated) are only a small proportion of the operational dump surface as the dumps advance, as shown in Figure 15. Areas become available for rehabilitation as spoil dumps reach the final spoil dump extents. For deep mines such as SSM, the amount of area available for rehabilitation progressively throughout the mine life is limited due to:

- Dumping occurs over multiple dump faces at various bench heights, with multiple access ramps. The dump
 access ramps change location over time as the dumps progress. These dump access ramps, plus the coal
 access ramps, restrict the dump footprint available and results in the separate dump areas progressing at
 different rates. The access ramps also limit the area available for progressive rehabilitation until they are no
 longer required. Numerous coal access ramp voids are planned to be backfilled towards the end of mining.
 Once backfilled, these areas become available for rehabilitation.
- Dumps can only increase in height once mining has progressed sufficiently to ensure the lower dump benches have also advanced sufficient distance for geotechnical stability of the spoil. This limits progressive rehabilitation to the outside of the lower dump benches as more spoil is dumped above. Significant areas become available for rehabilitation as the final and highest dump bench is completed dumping.
- The spoil dump low-walls continually advance with the mining operation and increase in height with the spoil dumps. The low-wall PMLU area of each pit becomes available for rehabilitation once mining and final backfill of the void is complete.

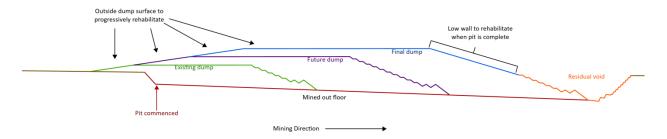


Figure 15: Indicative dump progression during life-of-mine (illustrative purposes only)

The spoil dump areas do not become available for progressive rehabilitation at a linear rate due to the mining and dumping sequence. Configuration of spoil dumps, ramp access, height and stability requirements to balance the required dump capacity all impact the release for rehabilitation areas. The area available for progressive rehabilitation is limited earlier in the schedule due to the mining sequence, with the majority of spoil dump areas becoming available for rehabilitation later in the mine life as dumps reach their maximum extents at a faster rate, and the low-wall areas become available once mining in each pit is complete.

As detailed in Table 13, the Roper spoil dumps are currently available for rehabilitation. Section 1.4.1.2 details the complexity and interconnectedness of this area and therefore the final closure design of the Roper spoil dumps needs to consider the broader Roper area to appropriately manage catchments and potential rehandle of material for TSF and rejects covers. The rehabilitation milestones for the Roper spoil dumps will commence once the detailed closure design is developed for this area.

However, by the end of mining in 2098, the vast majority of the spoil dumps (RA1, RA7, RA10, RA12, RA13, RA17, RA18, RA19) will have achieved the execution milestones in the PRCP schedule (86%) and have been rehabilitated to the point of revegetation (Table 21). Therefore 86% of the spoil dumps will only require monitoring and maintenance from this point to achieve the PMLU. After 2098, rehabilitation execution of the spoil dumps only remains for the low-wall and operational areas on the spoil dumps that are required until the end of mining e.g. haul roads and park-up areas.

Other areas are typically required to support mining operations, such as infrastructure areas, with limited area available for rehabilitation until mining is complete (Table 21). Areas associated with individual pits become available as mining finishes in each pit.

Table 21: PRCP schedule progressive rehabilitation summary

RA/IA	Description	Total area (ha)	% of total site	RM 7-9 by 2098 (ha)	RM 7-9 by 2098 (%)
RA1	Spoil dumps	3,824	24	2,958	77
RA2	Creek/surface water diversions and crossings	261	2	197	75
RA3	Infrastructure areas – CHPP, MIA, workshop, dams, coal stockpiles, roads, general infrastructure and disturbance	1,070	7	0	0
RA4	Roads, laydown areas and general infrastructure and disturbance	1,549	10	543	35
RA7	Existing rehabilitation	361	2	361	100
RA10	Existing rehabilitation	63	0	63	100
RA12	Spoil dumps	557	3	557	100
RA13	Spoil dumps	542	3	542	100
RA14	Roads, dams, laydown areas and general infrastructure and disturbance	90	1	90	100
RA15	Roads, laydown areas and general infrastructure and disturbance	515	3	515	100
RA16	TSFs and rejects	157	1	157	100
RA17	Existing rehabilitation	483	3	483	100
RA18	Existing rehabilitation	43	<1	43	100
RA19	Certified rehabilitation	294	2	294	100
IA1	Residual voids	1,481	9	538 (MM1/MM2)	36
IA2	Residual voids	454	3	0 (MM1/MM2)	0
PRCP schedule total		11,746	73	7,341	63
	Undisturbed and excised area	4,393	27	-	-
SSM total		16,139	100	-	-

2 COMMUNITY CONSULTATION

Legislative Requirement

In accordance with section 126C(1)(c)(iii) and (iv) of the EP Act, the rehabilitation planning part of the PRC Plan must include:

- · details of the consultation undertaken by the applicant in developing the proposed PRC Plan, and
- details of how the applicant will undertake ongoing consultation in relation to the rehabilitation to be carried out under the plan.

PRCP Guideline (Section 3.5)

In developing the proposed PRC Plan, the community should at least be engaged on the plan for the mine, PMLUs or NUMAs, areas of disturbance, rehabilitation and management methods, progressive rehabilitation, and closure timeframes. Ongoing community consultation should continue throughout the stages of the mine life so that progressive rehabilitation and the socio-economic and environmental impacts related to mine closure can be discussed with the community.

Community consultation carried out through different processes (such as an EIS) may be used to address the requirements in section 126C(1)(c) of the EP Act. The details of this consultation must be provided in the rehabilitation planning part of the proposed PRC Plan).

Transitional PRC Plans are still required to meet the legislative requirements in section 126C(1)(c) of the EP Act. All proposed PRC Plans must contain a community consultation plan regardless of whether the site has an existing EA.

To comply with section 126C(1)(c)(iii) of the EP Act, the PRCP must include details of the consultation undertaken by the applicant in developing the proposed PRCP (Section 2.4). This includes previous consultation undertaken as part of existing EA approvals or regular engagement processes (Section 2.2.1), and consultation undertaken as part of PRCP development (Section 2.2.2).

To comply with section 126C(1)(c)(iv) of the EP Act, and the PRCP Guideline, the PRCP must include a community consultation plan which details how the applicant will undertake ongoing consultation in relation to the rehabilitation to be carried out under the plan (Section 2.3).

A community consultation register has been compiled to support the development of this PRCP – SSM Community Consultation Register, and is provided in Appendix G.

2.1 Stakeholders

The PRCP Guideline requires that the applicant must attempt to consult all relevant members of the community, noting that the community may include, but are not limited to:

- Affected landholders (such as underlying and adjoining land holders, and holders of land necessary for access to the land to which the proposed PRCP relates)
- Traditional Owners
- Local government
- Local community groups

The Queensland Government Information sheet *Community consultation for Progressive Rehabilitation and Closure Plan* (last revised on 16 February 2024) (DESI, 2024a), states that community members to be included in consultation must have a genuine, demonstrable and legitimate interest in:

- · The land where the activity will occur
- The land adjacent to where the activity will occur
- The land/amenities surrounding where the activity will occur that are likely to be impacted by the activity (e.g. groundwater/drinking water users within the surrounding area or community located upstream or downstream of the activity)

Genuine interest may include direct impact interest (e.g. underlying and adjacent land holders), cultural interest (e.g. Traditional Owners), land use interest (e.g. overlapping tenure holders, or local government), or heritage, environmental, recreational or health interests (e.g. state or local government, or relevant community groups).

The stakeholders identified as having a genuine, demonstrable and legitimate interest in the ongoing rehabilitation and closure planning at SSM are listed in Table 22, along with BMA's existing relationship and the stakeholders potential areas of interest with respect to the SSM PRCP.

2.2 Consultation to date

2.2.1 Pre-PRCP consultation

The following rehabilitation and closure-related engagement took place for SSM prior to development of the SSM transitional PRCP:

- Engagement with Barada Barna Aboriginal Corporation (BBAC) has been ongoing since 2021 on PRCP development and rehabilitation execution, specifically on provision of seed for rehabilitation and contracting opportunities for rehabilitation execution
- Engagement with affected (underlying) landowners has been undertaken to develop compensation, leasing
 and agistment agreements, as BMA must rehabilitate in accordance with the requirements of the EP Act
 which are satisfied through the PRCP
- During 2018 and 2019, BMA engaged with the administering authority to implement the current EA conditions in relation to PMLUs and the associated acceptance criteria, which were included in the EA Table E1: Rehabilitation Requirements
- BMA engaged with the administering authority in relation to how the PRCP Guideline elements (particularly regarding transitional arrangements) and the current EA conditions related to rehabilitation and closure would transition to PRCPs
- Since April 2021, information about the PRCP process, the schedule for development of PRCPs for BMA assets and PRCP progress briefings has been provided to IRC at routine meetings, noting the SSM PRCP would be submitted in October 2024
- BMA has engaged with nearby landholders on land management and lease/license conditions, and on operational, environmental management and/or water matters, as required

2.2.2 Transitional PRCP consultation

Consultation as part of the development of the SSM transitional PRCP has included letters sent between 15 June 2024 and 31 July 2024 via letter box drop, post or email to more than 6,500 premises in Moranbah and Dysart, including property owners, households, business and community groups. These stakeholders are listed in Table 22 and include:

- Barada Barna People, via BBAC, as the registered native title holders for the SSM area
- Private owners of freehold land within 5km of the SSM EA area, including licensees of BMA-owned land
- Dysart residents, business owners and community organisations via a letter drop to premises within the Dysart postcode
- IRC
- Members of the Dysart Smart Transformation Advisory Council (STAC)
- Isaac Business Chamber
- Owners and operators of utility assets within and adjacent to SSM
- Nearby mining tenement holders and petroleum (gas) tenement holders
- Queensland Government departments

In addition to the consultation letters, BMA distributed information about PRCPs to individuals, businesses and organisations via:

- BMA's Coal Connect, an online weekly newsletter to SSM's workforce and all internal coal personnel
- BMA's Community Connect, a bi-monthly newsletter distributed to more than 15,000 Moranbah and Dysart community members and SSM suppliers throughout the Bowen Basin

BMA's Community Hotline for the general public was also available during consultation for the community to request more information about PRCPs and continues to be available for any future queries.

2.3 Community consultation plan

The PRCP Guideline requires the community consultation plan to include:

- Objectives of the community consultation
- Consultation process, including proposed frequency of consultation
- Information to be released for community consultation
- How community feedback will be considered in the PRCP

Whilst many stakeholders in the Isaac region are well-educated about mining operations, there is less understanding of planning for life-of-mine, rehabilitation and closure planning. The community consultation plan recognises the following social context:

- Talk of closure planning will lead to community concerns, requiring careful and consistent communication.
- PRCP consultations by a range of companies for a variety of assets will represent considerable cumulative demands on stakeholders, and a coordinated, strategic approach will be required to manage consultation fatigue
- Community members are becoming increasingly aware of climate change and the impacts of resource activities and energy policies on the environment

Accordingly, community and stakeholder expectations with regards to mine rehabilitation are expected to increase over time and need to be continuously assessed.

2.3.1 Objectives

The objectives of the community consultation include:

- To engage stakeholders in developing objectives and aspirations for PMLUs and landform, and social value opportunities to be considered in the PRCP
- To support transparent access to information about the SSM PRCP and implementation, enabling opportunities for the Moranbah and Dysart communities, SSM suppliers and government agencies and representatives to provide inputs and feedback on rehabilitation and closure outcomes
- To engage with utility owners and operators and adjacent mining and energy tenement holders, to provide information about SSM closure planning that supports them to manage their assets and interests

2.3.2 Consultation process

The consultation process to enable ongoing PRCP-related engagement is detailed in Table 23. The process includes the relevant stakeholders, engagement type and proposed consultation frequency to achieve the consultation objectives.

BMA continues to engage with neighbouring landholders on land management, lease/licence conditions, and operational matters, as required.

Stakeholder titles are correct as at the time consultation was undertaken. Some stakeholder titles (e.g. names of Queensland Government departments) may change over time and will be updated as necessary in future PRCP amendments.

2.3.3 Information to be provided

2.3.3.1 Consultation to date

The transitional PRCP consultation letters provided information about SSM and rehabilitation and closure planning and encouraged the stakeholders (Section 2.2.2) to contact BMA if they would like to discuss the PRCP. The information provided to stakeholders through the transitional PRCP consultation letters included:

- Introduction of Queensland Government requirements for mine rehabilitation and closure planning
- EP Act requirements for rehabilitation
- PRCP requirements
- PRCP submission date
- Location of SSM
- SSM EA details
- Approved activities at SSM
- MLs within SSM EA area
- Estimated mine life of SSM
- BMA's commitment to progressive rehabilitation
- Rehabilitation objectives and methods
- Progressive rehabilitation timeframes (in general terms)
- EA approved PMLU options
- Inclusion of residual voids as NUMAs
- BMA's commitment to future engagement in PRCPs
- An invitation to seek information or discussion about PRCPs
- Contact details for further information or discussion

The information provided to the community as part of the transitional PRCP consultation via Coal Connect, Community Connect included:

- Progressive rehabilitation as a key focus for BMA
- · PRCP requirements and purpose
- Timing for the development of the SSM PRCP
- Life of BMA assets that are subject to transitional PRCPs
- · Commitment to ongoing engagement
- · Contact details for further information or discussion

Consultation and engagement conducted by BMA to date was to transition the PMLUs and NUMAs within the EA to the PRCP. The BMA Community Hotline was also available during consultation for the community to request more information about PRCPs and continues to be available for any future queries.

2.3.3.2 Ongoing consultation

Information to be released for community consultation, as part of future SSM PRCP implementation will include:

- The rationale and scope for PRCPs
- Approved mining activities, PMLUs and NUMAs for SSM
- On-site activities and areas of disturbance
- Proposed rehabilitation methods, schedule and milestones
- Progress against rehabilitation milestones
- Alignment with long-term transformation planning occurring through governments
- Opportunities for community consultation as part of the PRCP's implementation

Communication tools could include:

• Frequently asked questions and answers and a PRCP fact sheet available to support consultation activities

- Face to face and virtual meetings, forums or workshops
- Updates and fact sheets about the SSM PRCP

Additional information to be shared with specific stakeholders is detailed in Table 23.

2.3.4 How feedback will be considered

The PRCP community consultation register (Appendix G) will be updated to include the consideration of issues raised and the outcomes of engagement as part of the community consultation activities outlined in Table 23. All stakeholder feedback recorded in the community consultation register will be considered in framing and detailing future PRCP amendments for SSM. This may include feedback on, for example:

- Planned PMLUs and NUMAs
- Alternative PMLUs
- Vegetation species most suitable to the approved PMLUs
- Rehabilitation methods to protect cultural heritage and achieve optimal use for the PMLUs
- PRCP schedule
- Water management (e.g. availability for beneficial use as part of the PMLUs, or adjacent uses)
- Development of business capacity programs to equip local and Indigenous businesses for rehabilitation works.

The PRCP will be evaluated to ensure PMLUs and NUMAs are consistent with the outcomes of consultation with the community.

2.4 Community consultation register

The community consultation stakeholders, the consultation undertaken, and feedback received are documented in the community consultation register (Appendix G). The community consultation register is compliant with section 126C(1)(c)(iii) of the EP Act and includes:

- · Identification of each community member/stakeholder
- Previous engagements with the community
- Consultation date(s)
- Description of consultation type
- Information provided to the community
- Issues raised/discussed by the community
- How issues have been considered
- Decisions/outcomes of engagement
- Commitments made by BMA

2.5 Feedback to date

All feedback received to date as part of the consultation for the PRCP, is documented in the community consultation register (Appendix G) and summarised in Table 22. There were no enquiries or feedback received following the transitional PRCP consultation letters apart from an acknowledgement of receipt of the letter. There were also no responses or enquiries to letters to Dysart premises or to the information provided via Community Connect and Coal Connect.

Table 22: SSM identified stakeholders, current BMA relationships, potential PRCP areas of interest, and consultation outcomes

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Traditional Owners			
Barada Barna People (QCD380/08), represented by BBAC	 BMA has a constructive working relationship with Barada Barna People, who are the registered native title holders of land which includes SSM BBAC and BMA meets regularly as part of the BBAC-BMA Relationship Committee BMA holds a project-wide Native Title Project Agreement with BBAC on behalf of Barada Barna peoples. SSM falls within the Agreement area. The Agreement was signed in July 2024. This Agreement sets a new way forward in the relationship between BMA and the Barada Barna people, providing intergenerational benefit. Under the Agreement, BMA will provide support towards priority community projects that enable Barada Barna people to live and work on-country, strengthening this important connection. From a rehabilitation and closure perspective, BMA is working with 	 Aspirations around rehabilitation and potential commercial opportunities as a PMLU How operational management and/or rehabilitation could contribute to future use of the areas Recognition and management of cultural heritage impacts Native Title and land acquisition interests PMLUs, NUMAs and landforms Future access to and ownership of land Environmental management/stewardship Employment and business opportunities in rehabilitation, environmental management and monitoring 	Existing PMLUs and NUMAs were discussed with BBAC and they expressed their desire to be involved in the activities required to support execution of the rehabilitation and management milestones for PMLUs and NUMAs

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
	BBAC specifically on provision of seed for rehabilitation and contracting opportunities for rehabilitation execution		
Underlying landowners, nearby land	lowners and licensees of BMA land		
 Private landowners within 5km Licensees and lessees Department of Transport and Main Roads (DTMR) IRC 	 BMA has longstanding relationships with the private owners of land within SSM's EA area BMA engages with nearby landowners and residents through community forums, letters, emails and letterbox drops, on an asneeded basis BMA engages on an asneeds basis with licensees and lessees regarding land management, commercial arrangements and licence terms and conditions BMA engages with DTMR on an asneeded basis with respect to land occupied by rail infrastructure IRC is the owner of Golden Mile Road, Warwick Park Road, Silver K Road and Picardy Road within the SSM EA area, engagement with IRC is discussed below 	 Environmental management /stewardship PMLUs, NUMAs and landforms PRCP schedule Future access to and ownership of land when it is no longer required for mining Water usage, quality and access to groundwater and surface water (e.g. water allocations, water pipelines, etc.) Potential impacts on roads and road reserves Potential impacts on rail infrastructure Potential impacts on land, property and future business value relating to PMLUs, NUMAs and timing of impacts 	No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Local Government			
• IRC	BMA has a long established and cooperative relationship with IRC BMA provides regular updates on PRCPs to IRC, as part of biannual IRC-BMA meetings which discuss a range of topics, and as part of additional issue-specific meetings from time to time	 Local employment Effects on Council services and infrastructure Environmental management /stewardship Rehabilitation progress PMLUs, NUMAs and landforms Potential impacts on environmental qualities, amenity or traffic conditions during closure or rehabilitation activities Management of closure impacts on employment and businesses Alignment of rehabilitation plans with local and regional planning goals Economic transformation (towards post-mining) and community sustainability Potential cumulative impacts of closure of multiple mining assets in a similar timeframe e.g. job and population losses 	 Transitional provisions for the PRCP were discussed. IRC understand the PMLUs as per the EA are being transitioned into the PRCP. IRC requested further information and engagement to understand how BMA and IRC could work together on potential innovative approaches to end of life mines and long term futures of the local communities postmining. These innovative approaches would need to provide commercial viability as well as ecological and social functionality. IRC have been interested to understand the challenges to facilitate future changes. BMA has committed to engage with IRC on this going forward

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Residents, businesses and commu	nity groups		
Dysart residents, landowners, businesses and community organisations and groups	 BMA engages with Dysart residents, businesses and community organisations through stakeholder meetings, media and social media, and Community Connect, a regular BMA newsletter Engagement activities with community members ranges from one-off responses to enquiries, to community events and forums, and ongoing engagement processes such as partnerships with community organisations and industry bodies 	 Timing of closure Rehabilitation obligations and progress Environmental management /stewardship Employment continuity PMLUs, NUMAs and landforms Management of closure impacts on employment and businesses Economic and community sustainability Local employment and business opportunities in rehabilitation works 	No feedback was received in relation to PMLUs or NUMAs at SSM
Dysart STAC	The Smart Transformation Project including the Dysart STAC was established by BMA in 2019. Dysart STAC members meet every two months to consider a range of issues and priorities related to the future and sustainability of Dysart's community and economy.	As above, with a particular focus on community and economic development and transformation	No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Isaac Business Chamber	The Isaac Business Chamber was established in early 2024 and represents businesses across the IRC local government area. BMA has engaged with Isaac Business Chamber through community forums.	As above, with a particular focus on business and economic development opportunities associated with mining and/or rehabilitation works	No feedback was received in relation to PMLUs or NUMAs at SSM
Utility owners / easement holders w	ith assets within the EA area		
 QR Aurizon Network DTMR Ergon Energy Powerlink including Q.E.C. Ltd IRC 	BMA has constructive working relationships and engages with utility owners and easement holders as required (issue-specific or transactional engagement) with respect to the following: Norwich Park Railway (and loop) (operated by Aurizon Network, with infrastructure owned by QR and land owned by DTMR) Dysart Middlemount Road (owned by IRC) Road reserves for Warwick Park Road, Silver K Road, Picardy Road and Golden Mile Road owned by IRC Powerlines (owned by Ergon Energy within Golden Mile Road reserve)	 Impact on assets/asset value Remediation of impacts on assets Any service disruptions and mitigations Crossing/interface agreements Timeframe for decommissioning utilities that service SSM Cost of decommissioning utilities 	No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
	 Powerlines (owned by Powerlink within Q.E.C. Ltd power easement, on land owned by BMA) Stock route (classified as minor and unused) aligned with Golden Mile Road. 		
SSM operations			
BMA workforce	BMA maintains ongoing communication with its workforce through 'toolbox' talks, email communications and a weekly digital newsletter, Coal Connect	 Timing of closure Rehabilitation obligations Employment continuity Management of closure impacts on employment and businesses Economic and community sustainability Local employment and business opportunities in rehabilitation works 	No feedback was received in relation to PMLUs or NUMAs at SSM
BMA suppliers			
SSM suppliers	BMA has relationships with an extensive network of small business suppliers in the Isaac, Mackay and Whitsunday regions. BMA communicates with suppliers through the BMA community-related Local Buying Program (C-RES) portal, and via Community Connect.	 Loss of supply opportunities with closure Opportunities to participate in supply chain for closure and/or rehabilitation works Economic transformation (towards post-mining) Economic and community sustainability 	No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Adjoining/nearby resource interests			
 Lake Vermont (Bowen Basin Coal Pty Ltd) Middlemount Coal Mine (Middlemount Coal Pty Ltd) German Creek Mine (Anglo Coal (German Creek) Pty Ltd Dysart East Project (Bengal Coal Pty Ltd) Queensland Coking Coal Pty Ltd (Vitrinite) Scap Exploration Pty Ltd Boardwalk Sienna Pty Ltd Adjacent and nearby Authority to Prospect (ATP) and Petroleum Commercial Area: CH4 Pty Ltd (Arrow Energy) Bow CSG Pty Ltd AGL Energy Limited Arrow CSG (ATP 364) Pty Ltd 	 BMA liaises with adjoining and nearby mining and resource interests on an as-needed basis BMA also engages with nearby petroleum resource holders in accordance with Mineral and Energy Resources (Common Provisions) Act 2014 (Qld) requirements for petroleum overlap activities 	 Future land use and ownership Collaboration on good industry rehabilitation and closure practices Cumulative impacts and opportunities of mine closures 	No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
Queensland Government			
Queensland Government departments: DoR – Deputy Director-General (DDG), Georesources Department of Agriculture and Fisheries (DAF) – DDG, Fisheries and Forestry DETSI – Queensland Parks and Forests	 BMA has constructive working relationships with DoR and DETSI DoR's DDG Georesources has asked to be kept informed on PRCPs Bundoora State Forest is located 5km south-west of ML70126. Coolibah Nature Reserve is located approximately 5km north-east of SSM, and Norwich Park Nature Refuge is located adjacent to SSM's EA area. BMA has not engaged with DAF or DETSI – Queensland Parks and Forests specifically regarding SSM in relation to state forests or nature reserves. 	 Legislative compliance Resource development Employment opportunities Public interest Environmental management Economic transformation (towards post-mining) Financial assurance Environmental risk management Future land use and landform Company responses to stakeholder views 	No feedback was received in relation to PMLUs or NUMAs at SSM
 Offices of the Ministers for: Resources and Critical Minerals Environment and the Great Barrier Reef; and Science and Innovation Energy and Clean Economy Jobs 	BMA conducts regular engagement with Ministers and Members of Parliament. Employment growth and sustainable community and economic development are key priorities for Queensland Government stakeholders		No feedback was received in relation to PMLUs or NUMAs at SSM

Stakeholder	Existing relationship	Potential areas of interest	Outcomes of community consultation during PRCP development and extent to which each proposed PMLU or NUMA is consistent with those outcomes
 Agricultural Industry Development and Fisheries; and Rural Communities 			
 Regional Development and Manufacturing, and Water 			
Members of Parliament			
 Member for Burdekin and Shadow Minister for Natural Resources and Mines 			
Shadow Minister for Environment and the Great Barrier Reef and Shadow Minister for Science and Innovation			
Shadow Minister for Energy and Cost of Living			
Shadow Minister for Water and the Construction of Dams			
Shadow Minister for Regional Development and Manufacturing			

Table 23: Process to be followed for ongoing community consultation for SSM PRCP

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	1. To engage stakeholders in developing objectives and aspirations for post-mining land use a value opportunities to be considered in the PRCP	and landform, and social
 Barada Barna People Private landowners within and nearby (within 5km) the SSM EA area Licensees of land within or adjacent to the EA area IRC 	 Meet with landholders, licensees, BBAC and IRC to provide an update on the PRCP and progress with rehabilitation, and invite their inputs and feedback on: PMLUs, NUMAs and post-mining landforms, including any particular values or opportunities in specific disturbed areas Rehabilitation methods which would optimise future woodland habitat and/or grazing opportunities, and potential land management requirements Shared value initiatives, e.g. infrastructure retention, capacity building, environmental management, or research partnerships Rehabilitation methods, schedule and progress towards milestones 	As required, to a schedule agreed with representatives
Private landowners within and nearby (within 5km) the SSM EA area	Advise the landowners and licensees in writing regarding any proposed changes to the SSM PRCP that have potential to affect interests in freehold land within or adjacent to the EA area.	As required, as part of the PRCP amendment process
Licensees of land within or adjacent to the EA area	Meet with landowners and licensees to discuss any proposed changes to the PRCP and progress with rehabilitation, and invite their inputs and feedback on: Land use/management/rehabilitation issues as relevant to the private freehold land Access to water resources Shared value initiatives, e.g. infrastructure retention, capacity building, environmental management, or research	As required, as part of the PRCP amendment process
	Correspond and if requested meet with landholder and licensees during the pre-closure, closure/decommissioning and rehabilitation periods, to reduce the potential for works to impact on their amenity, land use, property access or access to water.	Annually for at least 5 years prior to the forecast end of mining, or as agreed with the landowner

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	To engage stakeholders in developing objectives and aspirations for post-mining land use value opportunities to be considered in the PRCP	and landform, and social
Barada Barna People	Meet with BBAC to provide an update on the PRCP and progress with rehabilitation, and invite inputs and feedback on: • Access to land within the EA area as provided in the Native Title Project Agreement • Involvement of businesses owned by Barada Barna People in rehabilitation works • Pipeline of opportunities relating to rehabilitation work and land management	As part of regular updates to a schedule agreed with BBAC
• IRC	Meet with IRC as part of consultation on proposed amendments to the PRCP, to invite their inputs and feedback on: • Future use and management of land owned by IRC within the EA area • Impacts and opportunities pertaining to IRC assets within the EA area • IRC's strategic analysis and planning for the area • Challenges, opportunities and community aspirations of relevance to mine closure and rehabilitation • IRC's intended economic and social transition approaches • Shared value initiatives, e.g. infrastructure retention, capacity building, environmental management or research	As required, to a schedule agreed with IRC
	Provide progressive rehabilitation information as part of regular meetings with IRC.	As required, to a schedule agreed with IRC
	 Engage with IRC to seek inputs on: Any impacts of SSM's closure and/or rehabilitation works on Council assets or services Any impacts of SSM's closure and/or rehabilitation works on community amenity Rehabilitation methods and potential land/water management requirements 	Annually for at least 5 years prior to the forecast end of mining, or as agreed with representatives

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	1. To engage stakeholders in developing objectives and aspirations for post-mining land use a value opportunities to be considered in the PRCP	and landform, and social
BMA personnel	Keep the BMA workforce updated via internal newsletters/emails or toolbox talks if there are substantive changes to the PRCP, e.g., significant changes in rehabilitation milestones or plans for the cessation of mining at SSM, and including a communication channel for personnel to ask questions or contribute to discussions about PRCPs and rehabilitation.	Ongoing engagement process
	Commencing 5 years prior to the forecast cessation of mining, provide regular updates to BMA personnel on the implementation of closure, and seek personnel's feedback on rehabilitation progress.	Annually for at least 5 years prior to the forecast end of mining
Dysart residents, community members, business owners	Via workshops or focus groups, seek involvement in articulating community aspirations for rehabilitation, and economic transformation opportunities related to PMLUs or NUMAs.	As required, or as agreed with representatives
and community groups	Provide community updates if there are any substantive changes and associated PRCP amendments required, via mail-out letters.	As required, as part of the PRCP amendment process
	Provide updates and briefings on PRCPs to the Moranbah and Dysart STACs.	On request
 DAF - DDG DESI - Regional Director, Central, Queensland Parks and Forests 	Provide written updates on PRCP implementation and proposed amendments to the DDG, Fisheries and Forestry, inviting feedback on any considerations with regard to the Bundoora State Forest.	As required to address consultation requirements for amendment of the SSM PRCP
	Provide written updates on PRCP implementation and proposed amendments to the Regional Director Mackay, Queensland Parks and Forests (DESI), inviting feedback on any considerations with regard to the Coolibah Nature Reserve and Norwich Park Nature Refuge.	FROP

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	2. To support transparent access to information about the SSM PRCP and implementation, enather Moranbah and Dysart communities, SSM suppliers and government agencies and represent and feedback on rehabilitation and closure outcomes	
Dysart residents, community members, business owners, community groups	Using community forums such as interagency meetings, community meetings, supplier networks, partnership meetings and business network meetings, provide regular community updates on SSM PRCP and implementation.	Ongoing engagement process
	Invite input to final planning for closure, including management of closure impacts, via a workshop, community forum or other means.	3 years prior to the forecast cessation of mining
SSM suppliers	Provide regular updates about business supply opportunities resulting from progressive rehabilitation work packages, including through the Isaac Business Chamber.	As required
	Participate in initiatives led by IRC, Isaac Business Chamber, industry or local communities which aim to harness social value from mine closure and rehabilitation planning, and/or work towards economic transformation.	As required, or as agreed with representatives
	Provide information about the pending closure of SSM and potential future supply opportunities as part of closure and rehabilitation to local businesses, Traditional Owner businesses and SSM suppliers.	3 years prior to the forecast cessation of mining, subsequent consultation to be agreed
Elected representatives and Queensland Government agencies	Provide updates via letters and/or meetings on PRCPs to: DETSI – Regional Director, Central, Queensland Parks and Forests DoR – DDG, Georesources DoR – Director, Native Title Services and Coal Hub DAF – DDG, Fisheries and Forestry DTMR	As required, or as agreed with representatives
	Offices of the Ministers for:	

Stakeholders	Engagement type	Proposed consultation frequency		
Consultation objective	2. To support transparent access to information about the SSM PRCP and implementation, enabling opportunities for the Moranbah and Dysart communities, SSM suppliers and government agencies and representatives to provide inputs and feedback on rehabilitation and closure outcomes			
	- Resources and Critical Minerals			
	 Environment and the Great Barrier Reef; and Science and Innovation 			
	- Energy and Clean Economy Jobs			
	 Agricultural Industry Development and Fisheries; and Rural Communities 			
	 Regional Development and Manufacturing; and Water 			
	Queensland Parliament Member for Burdekin			
	Shadow Minister for Department of Resources			
	Shadow Minister for Environment and the Great Barrier Reef; and for Science and Innovation			
	Shadow Minister for Energy and Cost of Living			
	Shadow Minister for Water and the Construction of Dams			
	Shadow Minister for Regional Development and Manufacturing			

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	3. To engage with utility owners and operators, and adjacent mining and energy tenement hold information about SSM closure planning that supports them to manage their assets and intere	and the state of t
QR and Aurizon Network	Maintain correspondence with QR and Aurizon Network regarding progressive rehabilitation activities as they affect rail assets or operation, and undertake consultation regarding the decommissioning of rail interfaces.	As required, or as agreed with representatives
Utility owners and operators: QR Aurizon Network	Engage with utility owners and easement holders that have interests in land or infrastructure within the EA area to: • Inform them of closure timelines and rehabilitation activities relevant to land or infrastructure in	3 years prior to the forecast cessation of mining
DTMRErgon EnergyPowerlink	 which they have an interest Seek inputs about potential impacts on utility/transport assets and/or service capacity, and any specific management measures to avoid impacts on utility assets and services 	
• IRC	Maintain engagement regarding progressive rehabilitation and undertake consultation regarding crossing/interface agreements, as required if rehabilitation will affect utilities	Initiated 3 years prior to decommissioning
Nearby mining interests: • Lake Vermont (Bowen Basin Coal Pty Ltd)	Write to advise adjacent and nearby resource interests if there are any substantive changes to the closure and rehabilitation schedule in future iterations of the SSM PRCP	As required, as part of the PRCP amendment process
Middlemount Coal Mine (Middlemount Coal Pty Ltd)		
 German Creek Mine (Anglo Coal (German Creek) Pty Ltd 		
Dysart East Project (Bengal Coal Pty Ltd)		
 Queensland Coking Coal Pty Ltd (Vitrinite) 		
Scap Exploration Pty Ltd		

Stakeholders	Engagement type	Proposed consultation frequency
Consultation objective	3. To engage with utility owners and operators, and adjacent mining and energy tenement hold information about SSM closure planning that supports them to manage their assets and interest	and the state of t
Boardwalk Sienna Pty Ltd		
Adjacent and nearby ATPs and Petroleum Commercial Area:		
CH4 Pty Ltd		
Bow CSG Pty Ltd		
AGL Energy Limited		
Arrow CSG (ATP 364) Pty Ltd		

Relationship with PRCP schedule

SSM has transitional provisions and approved land outcomes identified in the EA. Community engagement on the proposed PMLUs and NUMAs within the EA being transitioned to the PRCP, and the proposed rehabilitation approach, has been undertaken prior to submission of the transitional SSM PRCP. Consultation will continue as per the process documented in the community consultation plan.

There was no feedback received following the distribution of the transitional PRCP consultation letters or to the information provided via Community Connect and Coal Connect.

3 POST-MINING LAND USES

Legislative Requirement

In accordance with section 126C(1)(d) of the EP Act, the rehabilitation planning part of the PRC Plan must state the extent to which each post-mining land use for land identified in the PRC PLAN schedule for the plan is consistent with:

- 1. the outcome of consultation with the community in developing the plan, and
- 2. any strategies or plans for the land of a local government, the State or the Commonwealth.

PRCP Guideline (Section 3.2)

A PMLU is defined under section 112 of the EP Act as the purpose for which the land will be used after all relevant activities for the PRC Plan carried out on the land have ended. Relevant activity for a PRC Plan is defined in the EP Act as the relevant activities to be carried out on land the subject of the plan. It is not the intention of this definition to include third-party activities or assets that continue to exist once mining activities have ceased, such as third- party pipeline easements, power easements or overlapping tenures for other EAs.

The rehabilitation planning part of the PRC Plan must include a detailed description of the nominated PMLU(s) for the site. The description must include (where relevant), but is not limited to:

- a description of the use of the land
- if applicable, the specific vegetation types (e.g. RE 13.2.9) or land suitability classification (e.g. Class 4)
- identification of any permanent or essential management infrastructure to be included as part of the PMLU
- completion criteria for measuring whether the PMLU has be successfully achieved

Where a PMLU has been previously addressed in a land outcome document and is able to be transitioned into the PRCP Schedule, the holder is not required to complete the information requirements under section 126C(1)(j) of the EP Act in this section for those PMLUs. However, the legislative requirements under section 126C(1)(d) of the EP Act still apply. All PMLUs transitioned into the PRCP Schedule must still meet the requirements of a PMLU explained in this section, particularly that the PMLU can be rehabilitated to a stable condition.

3.1 Nominated PMLUs

A number of PMLUs are permitted for SSM under the EA (Table E1 in the SSM EA), of which the following are proposed as PMLUs at SSM:

- Cattle grazing
- Woodland habitat
- Watercourse
- Dryland cropping

A substantially similar PMLU to cattle grazing is also planned to provide improved rehabilitation outcomes:

Grassland

The proposed PMLUs are illustrated in Figure 16 and have been recommended based on the closure landform, existing vegetation, ecological values, pre-mining and current land uses and the outcomes of the rehabilitation and closure studies supporting this PRCP. The PMLUs are underpinned by closure objectives that focus on achieving a safe, stable, non-polluting, and sustainable post-mining landscape (as defined in the EA).

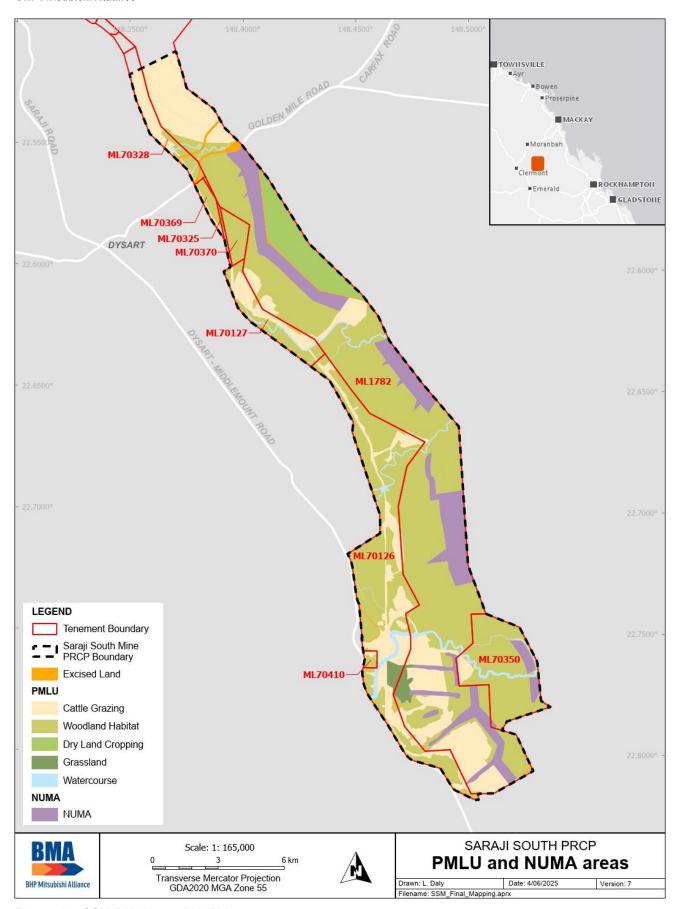


Figure 16: SSM PMLUs and NUMAs

3.1.1 Cattle grazing

3.1.1.1 Planned cattle grazing

The EA objectives, indicators and acceptance criteria for the planned cattle grazing PMLU are listed in Table 24. As the SSM EA is an approved LOD, BMA has transitioned the relevant EA acceptance criteria, as per the legislative intent of the transitional provisions, to the final milestone criteria of achievement of the PMLU to a stable condition of cattle grazing (RM13).

At SSM, cattle grazing PMLU is predominately planned for lower gradient areas disturbed by mining activities, areas that require shallow rooted species and/or areas where significant clearing occurred prior to mining.

Table 24: SSM EA PMLU objectives, indicators and acceptance criteria: cattle grazing

Goal	Objective	Indicator	Acceptance criteria
Safe to humans and wildlife	Safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use	Hazard assessment	No significant difference
Stable	Rehabilitation is geotechnically stable	Factor of Safety	≥1.5
	Rehabilitation is erosionally stable	Extent, slope gradient and groundcover	 Groundcover >50% 70% of slopes ≤20%
Non-polluting	Rainfall runoff from rehabilitation achieves relevant water quality objectives for receiving waters	pH EC Turbidity	Not significantly different to upstream values
	Deep drainage from rehabilitation achieves relevant water quality objectives for groundwater	EC	Not significantly different to: a) The EPP (Water) schedule documents water quality objectives for relevant groundwater chemistry zones; or b) Local water quality objectives developed in accordance with the Queensland Water Quality Guidelines.
Able to sustain the agreed post-mining land use	Rehabilitation is suitable for sustainable cattle grazing	Land suitability assessment for cattle grazing	Land suitability class ≤3 or not different from pre-mining class if ≥4. Assessment completed in accordance with LSA Framework for Open-Cut Coal Mine Rehabilitation 2018 (A rule-set for land suitability assessment of sustainable beef cattle grazing on land rehabilitated after open-cut coal mining in the Bowen Basin Queensland) (Short, 2018) unless otherwise agreed in writing between the administering authority and the environmental authority holder.
		Leucaena stem density	<250 stems >2m height per ha (1 per 40m²), mean total area

Pre-mining cattle grazing land suitability class

The pre-mining land suitability assessment specified in the EA acceptance criteria is based on the five land suitability classes defined under the *Guidelines for Agricultural Land Evaluation in Queensland* (DSITI & DNRM, 2015). Land suitability decreases progressively from Class 1 (suitable land with negligible limitations) to Class 5 (unsuitable land with extreme limitations). The SSM pre-mining land suitability class assessment results for cattle grazing are discussed in Section 1.2.6.

Post-mining cattle grazing land suitability class

The post-mining cattle grazing land suitability assessment referred to in the EA acceptance criteria was A rule-set for land suitability assessment of sustainable beef cattle grazing on land rehabilitated after open-cut coal mining in the Bowen Basin Queensland, developed by Short (2018).

The PRCP milestone criteria for achieving the PMLU to a stable condition for cattle grazing (RM13) will be assessed according to the land suitability framework presented in the *Rehabilitated mined land suitability for beef cattle grazing in the Bowen Basin: Technical Paper 1* (Short, 2025) from the Office of the Queensland Mine Rehabilitation Commissioner (OQMRC) (Table 25). This land suitability framework has minor changes from the rule-set referred to in the EA (Table 24) and will be adopted for the PRCP to align with the OQMRC leading practice paper. Land suitability decreases progressively from Class 1 (suitable - land capable of attaining maximum grazing productivity) to Class 5 (unsuitable - land that is not suitable for cattle grazing).

Rehabilitation activities will aim to achieve a land suitability class of 3 or better. However, the SSM pre-mining land suitability class assessment (Section 1.2.6) and monitoring of cattle grazing reference sites has shown that land within SSM and the broader area often decreases to class 4 and class 5 due to a number of limitations in the framework not meeting class 3 or better. Therefore, cattle grazing rehabilitation at SSM can be land suitability class ≥4, if not different to pre-mining (as per the EA acceptance criteria).

Reference sites (Section 8.4.1) will also be assessed according to the land suitability framework (Table 25) to enable a comparison between the performance of cattle grazing rehabilitation and the representative grazing land suitability class of the broader area.

Table 25: Regional land suitability framework for beef cattle grazing PMLU rehabilitation in the Bowen Basin (Short, 2025)

1 to the trans	Latherine		Suitable			Unsuitable	
Limitation	Indicator	Class 1	Class 2	Class 3	Class 4	Class 5	
Water availability	Soil water storage (mm)	>75	75 - 60	<60 - 40	<40 - 30	<30	
Nutrient deficiency	Available-P (mg/kg) in 0 - 0.1m depth increment	>20	20 - 14	<14 - 8	<8 - 4	<4	
Nutrient availability and toxicity	pH in 0 - 0.1m depth increment	7.3 - 6.6	< 6.6 - 6.0 >7.3 - 7.9	<6.0 - 5.6 >7.9 - 8.4	<5.6 - 5.0 >8.4 - 9.0	<5.0 >9.0	
Surface condition	Surface condition	Fine (peds <10mm)	Coarse (peds >10mm)	Surface crust	Very hard setting	Massive	
Salinity	ECe (dS/m) in effective rooting depth (ERD) (0-0.6m depth increment)	<2	2 - 4	>4 - 10	>10 - 16	>16	
Rockiness	Gravel, 20 - 60mm (%)	<20	20 - 50	>50 - 70	>70 - 85	>85	
	Cobble, 60 - 200mm (%)	<10	10 - 20	>20 - 50	>50 - 75	>75	
	Stone, 200 - 600mm (%)	<2	2 - 10	>10 - 20	>20 - 50	>50	
	Boulders, >600mm (%)	0	<2	2 - 10	>10 - 20	>20	
Slope gradient	Slope gradient (%)	<5	5 - 10	<10 - 15	>15 - 20	>20	
Microrelief	Vertical (m)	0	<0.2	0.2 - 0.4	>0.4 - 0.6	>0.6	
Water erosion	Slope (%), ESP <6 (%) in 0-0.1m soil depth increment	<5	5 - 8	> 8 - 12	>12 - 18	>18	
	Slope (%), ESP >6 - 14 (%) in 0-0.1m soil depth increment	<3	3 - 6	>6 - 10	>10 - 12	>12	
	Slope (%), ESP >14 (%) in 0-0.1m soil depth increment	<1	1 - 2	>2 - 4	>4 - 6	>6	
Sub-soil erosion	ESP (%) at 0.5m depth	<6	6 - 14	> 14 - 23	>23 - 34	>34	
Potentially acid forming materials	Strongly acid conditions (pH < 4.5) within (x) m depth	>3	3 - 2	<2 - 0.9	<0.9 - 0.6	<0.6	

3.1.1.2 Existing cattle grazing

The majority of existing cattle grazing rehabilitation (RA7, RA17) was undertaken prior to the inclusion of the rehabilitation acceptance criteria in the EA in 2018, therefore the rehabilitation methodologies and revegetation objectives were not aligned to the current EA. The existing cattle grazing rehabilitation landforms were designed based on the EA and practices at the time of rehabilitation establishment.

These existing rehabilitation areas were not designed to allow for the collection of surface water quality samples representative of the specific rehabilitation area. Also, existing rehabilitation within the Roper spoil dump areas form part of the catchments that report to the Roper residual voids, therefore have surface runoff contained within the NUMA and not entering the surrounding watercourses. Criteria associated with the collection of surface water samples has therefore not been transitioned for the existing rehabilitation areas.

As the existing cattle grazing rehabilitation was undertaken prior to the development of the LSA Framework for Open-Cut Coal Mine Rehabilitation 2018 (Short, 2018), the rehabilitation methodologies do not align with this framework. Therefore, the final milestone for achieving the PMLU to a stable condition for cattle grazing (RM17) includes criteria for the assessment of Grazing Land Management ABCD land condition as described in the Queensland Reef Protection Regulations Farming in Reef Catchments Grazing Guide (DES, 2022a) (Section 8.2.4.5).

Many areas of existing cattle grazing rehabilitation are highly infested with leucaena, and although leucaena will be actively managed as part of the monitoring and maintenance program (Section 8), it is likely these areas will only be suitable for marginal cattle grazing due to limitations.

3.1.2 Grassland

For areas that require a cover with shallow rooted species to manage risk, and where cattle may impact the stability and integrity of the cover, a substantially similar PMLU to cattle grazing is proposed - grassland. The objective of this PMLU is stability, therefore this PMLU will not be grazed and vegetation cover is not a priority, to ensure contaminants are not released to the receiving environment. The milestone criteria for the grassland PMLU reflects the requirement for stability, with seeding with shallow rooted species similar to cattle grazing PMLU, and rock may be utilised on steeper areas for erosional stability.

At SSM, grassland PMLU is planned for tailings and rejects cover areas (RA16).

3.1.3 Woodland habitat

3.1.3.1 Planned woodland habitat

The EA objectives, indicators and acceptance criteria for a PMLU of woodland habitat are listed in Table 26. As the SSM EA is an approved LOD, BMA has transitioned the relevant EA acceptance criteria, as per the legislative intent of the transitional provisions, to the final milestone criteria of achievement of the PMLU to a stable condition of woodland habitat (RM14).

At SSM, woodland habitat PMLU is planned for areas near existing vegetation communities and spoil dumps, including the low-wall within RA1. The low-wall within RA1 includes extending the woodland habitat PMLU into the residual voids, 20m below ground level for Lotus/Campbell, Gilbert and Price/Leichhardt pits.

Table 26: SSM EA PMLU objectives, indicators and acceptance criteria: woodland habitat

Goal	Objective	Indicator	Acceptance criteria
Safe to humans and wildlife	Safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use	Hazard assessment	No significant difference

Goal	Objective	Indicator	Acceptance criteria
Stable	Rehabilitation is geotechnically stable	Factor of safety	≥1.5 unless an alternative is justified by an appropriately qualified engineer
	Rehabilitation is erosionally stable	Groundcover (steep slopes, >15%)	80%
		Groundcover (lesser slopes, ≤15%)	50%
Non-polluting	Rainfall runoff from rehabilitation achieves relevant water quality objectives for receiving waters	pH EC Turbidity	Not significantly different to upstream values
	Deep drainage from rehabilitation achieves relevant water quality objectives for groundwater	EC	Not significantly different to: a) the EPP (Water) schedule documents water quality objectives for relevant groundwater chemistry zones; or b) local water quality objectives developed in accordance with the Queensland Water Quality Guidelines.
Able to sustain an agreed post- mining land use	Native bushland habitat characteristics	Species richness: Trees Shrubs Grasses	≥2 ≥3 ≥4
		Tree canopy cover	≥16 %

3.1.3.2 Existing woodland habitat

For areas of existing woodland habitat rehabilitation (RA10, RA19), BMA has transitioned the relevant EA acceptance criteria to the final milestone criteria of achievement of the PMLU to a stable condition (RM18). In accordance with the EA and practices at the time of rehabilitation establishment, the existing woodland habitat areas were not designed to allow for the collection of surface water quality samples representative of the specific rehabilitation area. Also, existing rehabilitation within the Roper spoil dump areas form part of the catchments that report to the Roper residual voids, therefore have surface runoff contained within the NUMA and not entering the surrounding watercourses. Criteria associated with the collection of surface water samples has not been transitioned for the existing rehabilitation areas.

3.1.4 Watercourse

The EA objectives, indicators, and acceptance criteria for a PMLU of watercourse are listed in Table 27. These criteria were developed specifically for diversions, although they can be applied to watercourse rehabilitation. As the SSM EA is an approved LOD, BMA has transitioned the relevant EA acceptance criteria, as per the legislative intent of the transitional provisions, to the final milestone criteria of achievement of the PMLU to a stable condition of watercourse (RM15).

The watercourses that transverse through SSM, and any associated diversions, are assigned a watercourse PMLU. These include Downs Creek, Lotus Creek, Stephens Creek, Scott Creek, Sandy Creek and Rolf Creek (Section 1.2.4). Watercourse PMLU is also planned for surface water diversions and various creek crossings in natural watercourse reaches.

The lateral limits of the watercourse PMLU were defined based on the following considerations:

- Aerial imagery of the creeks and drainage diversion/structures and associated riparian vegetation/regional ecosystems (Section 1.2.8)
- Strahler stream orders (Section 1.2.4)
- Flood modelling (Section 6.1.2)
- Diversion designs (Section 6.1.7)

Table 27: SSM PMLU objectives, indicators and acceptance criteria: watercourse

Goal	Objective	Indicator	Acceptance criteria
Safe to humans and wildlife	Safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use	Hazard assessment	No significant difference.
Stable	Rehabilitation is erosionally stable	Geomorphic index (Index of diversion condition (IDC) method)	Greater or equal to upstream or downstream values.
Non-polluting	Rainfall runoff from rehabilitation achieves relevant water quality objectives for receiving waters	pH EC Turbidity	Not significantly different to upstream values.
Able to sustain an agreed post- mining land use	Riparian vegetation	Riparian vegetation index (IDC method)	Greater or equal to upstream or downstream values.

3.1.5 Dryland Cropping

The EA objectives, indicators and acceptance criteria for a PMLU of dryland cropping are listed in Table 28.

The SCL trigger map indicates there are SCL areas within SSM, predominately in the north and north-east of the site. As detailed in Section 1.2.10.1, an on-ground assessment has not verified the SCL trigger map areas are suitable SCL, however cropping is currently undertaken on ML1782 predominately within the nil surface area to the east of Silver K Road.

Dryland cropping PMLU is planned at SSM for this existing cropped area to the east of Silver K Road. Mining activities are not planned to disturb this area, therefore no RA is planned for this area (Figure 28).

Table 28: SSM EA PMLU objectives, indicators, and acceptance criteria: dryland cropping

Goal	Objective	Indicator	Acceptance criteria	
Safe to humans and wildlife	Safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use	Hazard assessment	No Significant difference	
Stable	Rehabilitation is geotechnically stable	Factor of safety	≥1.5	
	Rehabilitation is erosionally stable	Percentage of cultivation at >1% slope gradient with functional contour banks	100% of rehabilitated areas	
Non-polluting	Rainfall runoff from rehabilitation achieves relevant water quality objectives for receiving waters	pH EC Turbidity	Not significantly different to upstream values	
	Deep drainage from rehabilitation achieves relevant water quality objectives for groundwater	EC	Not significantly different to: a) The EPP (Water) schedule documents water quality objectives for relevant groundwater chemistry zones; Or b) Local water quality objectives developed in accordance with the Queensland Water Quality Guidelines.	
Able to sustain the agree post- mining land use	Rehabilitation is suitable for sustainable dryland cropping	Land suitability assessment for dryland cropping	Land suitability class ≤3 or not different from pre-mining class ≥4. Assessment completed in accordance with the Regional Land Suitability Frameworks for Queensland 2013 unless otherwise agreed in writing between the administering authority and the environmental authority holder.	

3.2 Community considerations

The proposed PMLUs of cattle grazing, woodland habitat, watercourse and dryland cropping as presented in the EA and this PRCP, is consistent with the outcomes of community consultation completed to date (Section 2). No concerns on these proposed PMLUs were raised during community consultation, including:

 Consultation with BBAC - the PMLUs have been discussed with the BBAC as part of ongoing consultation regarding the development of the PRCPs. This consultation included discussion on opportunity for BBAC's

involvement in rehabilitation activities as it relates to the proposed PMLUs, specifically on the provision of seed and contracting opportunities for rehabilitation execution.

- Consultation with IRC BMA has provided regular PRCP briefings to the IRC which have detailed that the
 proposed PMLUs as per the EA, are being transitioned into the PRCP. IRC and BMA have agreed to
 continue to engage on future opportunities, challenges and community aspirations, relevant to mine
 rehabilitation and closure as they develop.
- No feedback or enquiries in relation to these PMLUs were received as part of the consultation.

The proposed PMLU of grassland, which is substantially similar to cattle grazing, was requested by the administering authority via consultation during a visit to a BMA site in May 2025 (during the information stage), to improve the rehabilitation outcomes for areas that require stability.

3.3 Regional planning integration

The PMLUs at SSM consider the pre-mining and current land use, and already approved PMLUs in the SSM EA (Section 3.1).

Under the Isaac Regional Planning Scheme (Isaac Regional Council, 2021), SSM is located in a rural zone. This includes primary production uses (such as cropping, intensive horticulture, aquaculture, grazing, intensive animal industries, animal husbandry and animal keeping), renewable energy facilities and extractive industries, outdoor recreation and small-scale tourism facilities. The purpose of the rural zone includes providing "for other uses and activities that are compatible with: (i) existing and future rural uses and activities; and (ii) the character and environmental features of the zone…" (Isaac Regional Council, 2021).

Land use performance outcomes (PO11) for this rural zone include ensuring development:

- '(a) is consistent with the rural character of the locality;
- (b) supports the primary rural function of the zone;
- (c) protects rural, natural and scenic values of the locality; and
- (d) includes boundary realignments where used to align with mining or petroleum tenements'.

Concurrently, the Queensland Government - via the Mackay, Isaac and Whitsunday Regional Plan (DLGP, 2012), maps SSM in a regional landscape and rural production area, which includes land used for agriculture, natural economic resources (including extractive resources), water catchment, traditional uses, conservation areas and native forests.

The defined uses for both of these plans are consistent with the PMLUs proposed for SSM.

Relationship with PRCP Schedule

The proposed PMLUs for SSM are consistent with pre-mining and current land uses, and transition the EA approved, or substantially similar, PMLUs. These PMLUs can also be aligned to future land use development outcomes defined as part of State and regional plans.

The PMLU extents consider the closure landform, growth media, pre-mining land uses, existing vegetation, ecological values, watercourses and surrounding public infrastructure.

4 NON-USE MANAGEMENT AREAS

Legislative Requirement

In accordance with sections 126C(1)(d), (g) and (h) of the EP Act, for each proposed non-use management area, the rehabilitation planning part of the PRC Plan must:

- state the reasons the applicant considers the area cannot be rehabilitated to a stable condition
- include copies of reports or other evidence relied on by the applicant for each proposed non-use management area
- state the extent to which the proposed non-use management area is consistent with the outcome of consultation with the community in developing the plan, and
- state the extent to which the non-use management area is consistent with any strategies or plans for the land of a local government, the State or the Commonwealth.

PRCP Guideline (Section 3.3)

A NUMA is defined in the EP Act as an area of land the subject of a PRC Plan that cannot be rehabilitated to a stable condition after all relevant activities for the PRC Plan carried out on the land have ended. Proposed NUMAs must be justified under the criteria set out in section 126D(2) of the EP Act.

The rehabilitation planning part of the PRC Plan must also include:

- a) information demonstrating that the proposed footprint of each NUMA is as small as practicable
- b) an assessment of the NUMA location options, having regard to the constraint of the resource location, with an analysis of the potential environmental harm and sensitivity of the surrounding environment of each option
- c) a description of the proposed location of each NUMA and the environmental values of the surrounding environment
- d) evidence showing how the proposed location will prevent or minimise environmental harm.

In accordance with section 126D(1)(c) of the EP Act, the applicant must develop and implement management milestones within the PRCP Schedule which achieve best practice management and minimise environmental harm for any NUMAs contained in the proposed PRC Plan. As part of the development of management milestones, the applicant must conduct a NUMA specific risk assessment to identify and quantify risks and associated controls. The risk assessment should have an overarching goal of identifying and controlling any significant risks to the community and the environment.

The proposed PRC Plan must include a detailed description of the nominated NUMA(s) for the site. The description must include, but is not limited to:

- description of the land at surrender
- any relevant safety features
- completion criteria for measuring whether the NUMA has achieved sufficient improvement.

Where a NUMA has already been identified in a land outcome document and is able to be transitioned into the PRCP Schedule, the applicant is not required to comply with sections 126C(1)(g) or (h) or 126D(2) or (3) of the EP Act. NUMAs transitioned into the PRCP Schedule are not required to complete the information requirements under section 126C(1)(j) of the EP Act in this section for those NUMAs. However, the legislative requirements under section 126C(1)(d) of the EP Act still apply.

Where a NUMA has not been pre-approved and is proposed as part of the transition into the PRC Plan, the applicant must include all of the requirements identified in this section.

As outlined in Section 754(3) of the EP Act and Section 6.3.2 of the PRCP Guideline "a NUMA will be taken to be pre-approved if a land outcome, the same or substantially similar to a NUMA, is contained in a land outcome document". Residual voids are authorised under Schedule E (Condition E6 and E7) of the EA as the LOD. BMA has transitional arrangements for residual voids as pre-approved NUMAs.

As per the PRCP Guideline, if a NUMA has already been identified in a LOD, the applicant is not required to comply with Sections 126C(1)(g) or (h), or Section 126D(2) or (3) of the EP Act and is not required to complete the information requirements under Section 126C(1)(j) of the EP Act for the approved NUMAs. However, SSM is still required to meet the legislative requirements under Section 126C(1)(d) of the EP Act.

As the LOD does not state the area or the location of the proposed NUMAs, the PRCP Guideline requires this PRCP to include detail on how the total area will be minimised and how the location of the proposed NUMAs will minimise risk to the environment.

4.1 Nominated NUMAs

The SSM NUMAs include the residual voids of Lotus/Campbell Pit, Gilbert Pit, Price/Leichhardt Pit, Roper Pit and East Pit (Figure 16). Due to the pit progression down dip, the residual voids are located along the eastern extent of the mined out pits within ML1782 and ML70350. Ramp voids are part of the residual voids.

The extent of the NUMAs is designed to achieve an area that is safe and structurally stable and includes: the residual void high-wall and end-wall below natural ground level and the associated wall set-backs at natural ground level to achieve a factor of safety (FoS) of 1.5; the residual void low-wall (and ramp walls) from 20m below ground level and the associated wall set-backs to achieve FoS of 1.5 (Lotus/Campbell, Gilbert, Price/Leichhardt); the residual void low-wall (and ramp walls) below natural ground level and the associated wall set-backs to achieve FoS of 1.5 (East Pit, Roper Pit); the residual void floor; and a safety bund and fence. The total proposed NUMA area is 1,936ha.

The NUMAs will incorporate safety features to prevent access, including:

- A safety bund and fencing constructed at the NUMA extents to prevent human and livestock access
- Signage at regular intervals along the fence

The breakdown of the NUMA area into the high-wall, low-wall and void lake components are detailed in Table 29.

Table 29: Breakdown of SSM NUMA areas

Void	High-wall/end- wall void area (ha)	High-wall/end- wall set-back area (ha)	Low-wall void area (ha)	Low-wall set- back area (ha)	Void lake area (ha)
Lotus/ Campbell	130	104	232	25	80
Gilbert	76	43	109	14	32
Price/ Leichhardt	125	64	266	14	53
East	30	23	49	-	14
Roper	102	-	230	-	122

4.2 Minimising environmental harm

Technical studies undertaken to support this PRCP have assessed, refined and optimised the SSM NUMA locations and extent to minimise the potential for environmental harm. These studies resulted in the iterative refinement of the NUMA design as documented below.

The NUMA locations and extents in the preliminary closure landform were used as the basis for the following void studies:

- Void in flood plains modelling (Section 5)
- Initial void water balance modelling
- Initial void water quality modelling
- Initial void geotechnical assessment

Based on the outputs of these initial PRCP studies, the closure landform was redesigned to increase the distance of the void high-wall and end-wall from the approved extents and watercourses for Lotus/Campbell Pit,

Gilbert Pit, Leichhardt Pit and East Pit, to achieve structural stability of FoS≥1.5 within the NUMA extents and to limit interaction with the floodplain.

The refined closure landform, including refined NUMA locations and reduced NUMA extent, was then used as the basis for the following studies:

- Updated void water balance modelling (Section 6.3)
- Updated void water quality modelling (Section 6.3)
- Updated void geotechnical assessment (Section 6.3)
- Groundwater modelling (Section 6.1.1)
- Rehabilitation flood modelling (Section 6.1.2)

The final NUMA locations and extent were further optimised based on the outcomes of all the final studies. This resulted in the final modifications to the closure landform to ensure the NUMAs minimise risk to the environment:

- Lotus/Campbell Pit: partial void backfill on the northern and southern end-walls to mitigate the risk of flooding into the residual void up to the 0.1% annual exceedance probability (AEP) (including climate change consideration of 20% increase in rainfall intensity) flood level (Sections 6.1.2 and 6.1.5.2)
- Gilbert Pit: partial void backfill on both the northern and southern end-walls and a landform along the north
 and south sections of the high-wall to mitigate the risk of flooding into the residual void up to the 0.1% AEP
 (including climate change consideration of 20% increase in rainfall intensity) flood level (Sections 6.1.2 and
 6.1.5.2)
- Price/Leichhardt Pit: partial void backfill on the northern end-wall to mitigate the risk of flooding into the residual void up to the 0.1% AEP (including climate change consideration of 20% increase in rainfall intensity) flood level (Sections 6.1.2 and 6.1.5.2)
- East Pit: partial void backfill on both the end-walls adjacent to Rolf Creek to mitigate the risk of flooding into the residual void up to the 0.1% AEP (including climate change consideration of 20% increase in rainfall intensity) flood level (Sections 6.1.2 and 6.1.5.2)

The studies presented in this PRCP are based on the NUMAs within the PRCP closure landform. The final NUMA locations and extents for Lotus/Campbell, Gilbert, Price/Leichhardt and East pits, do not present an unacceptable risk of environmental harm outside of the tenure boundary due to:

- Flooding into the residual voids being mitigated up to the 0.1% AEP flood level (Section 6.1.2)
- The residual voids acting as long-term groundwater sinks, which contain potential contaminant migration via groundwater within the tenure boundaries (Sections 6.1.1.2 and 6.3.2.3)
- Minimising potential for interconnectivity between the deeper Permian and shallower aquifers (Section 6.3.2.2)
- Long-term pit water levels remaining below the spill point, and therefore, minimising the risk of residual voids overtopping and releasing void water to surface waters and/or the receiving environment (Section 6.3.2.1)
- The design of the NUMA extent to achieve structural stability, resulting in no geotechnical damage beyond the NUMA (Section 6.3.1)

Further data and technical studies are required to enable an accurate assessment of the Roper area NUMAs, and the development of management strategies which best manage potential risks and minimises the potential of environmental harm (Section 1.4.1.2).

Consideration has also been given to alternative NUMA solutions, such as partial or complete backfilling of the residual voids in excess of the backfill planned for flood mitigation. These considerations include the following:

 Complete backfilling of the residual voids will create flow-through or source conditions from the spoil and backfilled voids and increase the height of recovered groundwater, increasing the potential risk of interconnecting aquifers and impacting off-tenure areas such as downgradient Quaternary alluvium aquifers.

Partial backfilling of residual voids (i.e. reducing the depth of the residual void) also increases the height of groundwater recovery, increasing the potential for flow-through or source conditions and increasing the potential risk of interconnecting aquifers and impacting off-tenure areas. Environmental impact statement (EIS) studies completed within a similar nearby environmental setting for the Winchester South mine (Whitehaven Coal, 2022), indicated partial backfilling to reduce the depth of the residual void in the Bowen Basin environment, creates a surface lake of higher elevation, that also progresses towards brine levels of salinity over time. Saline residual void lakes of higher elevation have the potential to create additional complete exposure pathways to receptors through increased hydraulic head gradients to groundwater systems and through overtopping into surface water systems.

Retaining the residual voids as presented in this PRCP (i.e. with backfill required for flood mitigation), maintains the strength of the groundwater sinks: maximises the retention of groundwaters that have percolated through disturbed spoil profiles/other operational areas; minimises the potential for connection of aquifers of different qualities; minimises the potential for overtopping during extreme weather events; and are key to managing the risk of potential environmental harm outside of the SSM tenure boundary associated with groundwater pathways.

4.3 Minimising NUMA area

The NUMA area proposed in this PRCP has been minimised from the original mine plans. The mine plans prior to any minimisation, indicate a final SSM void area of 2,687ha. The proposed PRCP NUMA area of 1,936ha represents a reduction in area of 750ha or 28%.

As detailed in Section 4.2, the development of the PRCP closure landform involved an iterative design process to allow the results of the supporting technical studies to be incorporated into the landform design to ensure the NUMAs minimise risk to the environment. The preliminary PRCP closure landform incorporated a number of key strategies to minimise the NUMA area at SSM, which included:

- Backfill of the pits during mining spoil is dumped in the mined out pit void, resulting in 80% of the mined out pit void being progressively backfilled to ground level by the end of mining
- Backfill of as many ramp voids as practical SSM has commenced backfilling ramp voids to minimise the final void area and this will continue throughout the life of the operation to maximise the backfill during mining
- Steepening the residual void high-walls and low-walls while maintaining the required geotechnical stability.
 Steepening the high-walls and low-walls is also part of the rehabilitation strategy to minimise risk to the environment by reducing the catchment area into the voids.

The final iteration of the closure landform submitted in the PRCP included further minimisation of the NUMA area by:

- Increasing the set-back of the high-wall and end-wall from the lease boundary and watercourses to achieve the required FoS
- · Partial void backfill of:
 - Lotus/Campbell Pit: partial void backfill on the northern and southern end-walls
 - Gilbert Pit: partial void backfill on the northern and southern end-walls
 - Price/Leichhardt Pit: partial void backfill on the northern end-wall
 - East Pit: partial void backfill on both the end-walls adjacent to Rolf Creek
- Extending the PMLU on the low-wall into the residual void, 20m below ground level for Lotus/Campbell,
 Gilbert and Price/Leichhardt pits

4.4 Community considerations

Residual voids as NUMAs as presented in the EA and this PRCP, is consistent with the outcomes of community consultation completed to date (Section 2). No concerns on the proposed NUMAs were raised during community consultation, including:

- Consultation with the BBAC the plan for residual voids as NUMAs has been shown to the BBAC as part
 of ongoing consultation in regards to the development of the PRCPs. This consultation included
 discussion of opportunity for BBAC's involvement in rehabilitation activities.
- Consultation with IRC BMA has provided regular PRCP briefings to the IRC which have detailed the
 plan for residual voids as NUMAs. IRC and BMA have agreed to continue to engage on future
 opportunities, challenges and community aspirations, relevant to mine rehabilitation and closure, as they
 develop.
- No feedback or enquiries in relation to NUMAs were received as part of the consultation.

4.5 Regional planning integration

Both the local Isaac Regional Planning Scheme (Isaac Regional Council, 2021) and the broader Mackay, Isaac and Whitsunday Regional Plan (DLGP, 2012) identify mineral and extractive resource industries - in particular, coal and coal seam gas, as significant components of the current and future regional economic development.

Relationship with PRCP schedule

The proposed NUMAs for SSM are designed to be safe, structurally stable and minimise the risk of environmental harm. Retention of residual voids as pre-approved NUMAs, as part of the rehabilitated landscape, is consistent with the SSM LOD.

5 VOIDS IN FLOOD PLAINS

Legislative Requirement

In accordance with section 126D(3) of the EP Act, if land the subject of the proposed PRCP Schedule will contain a void situated wholly or partly in a flood plain, the schedule must provide for the rehabilitation of the land to a stable condition.

PRCP Guideline (Section 3.4)

Section 41C of the EP Regulation states the decision considerations for a void situated wholly or partly in a flood plain. A void is considered to be located in a flood plain if the flood plain modelling shows that, when all relevant activities carried out on the land have ended, the land is the same height as, or lower than, the level modelled as the peak water level 0.1% AEP for a relevant watercourse under the guideline Australian Rainfall and Runoff (2019)(ARR).

Where a land outcome document has a pre-approved land outcome for a void with a location specified, flood plain modelling is not required. If a void has been identified as a NUMA in a land outcome document but the location is not identified, the applicant is required to carry out flood plain modelling in accordance with this section of the guideline. While the provision in the EP Act relating to voids located within a floodplain having to rehabilitate to a stable condition does not apply, the PRC Plan must include how the proposed location of the void minimises risks to the environment. Therefore, the flood plain modelling is required to support the assessment of the proposed location of the void.

If there are no land outcomes identified in a land outcome document, the applicant is required to carry out flood plain modelling in accordance with this section of the guideline.

A voids in flood plain assessment has been undertaken by appropriately qualified persons (AQP) to support the development of this PRCP. The detailed report – *Norwich Park Mine Transitional PRCP Voids in Flood Plain Assessment* (SLR, 2024a), is provided in Appendix H.

5.1 Background

The SSM closure landform includes residual voids as pre-approved NUMAs for Lotus/Campbell Pit, Gilbert Pit, Price/Leichardt Pit, East Pit and Roper Pit (Figure 16). As the locations of these voids are not identified in the LOD, in accordance with the PRCP Guideline and transitional PRCP provisions, a voids in flood plains assessment has been undertaken.

5.2 Relevant watercourses

The voids in flood plains assessment must consider relevant watercourses. A 'relevant watercourse' is defined as s41C of the *Environmental Regulation 2019* (EP Regulation):

- (a) a watercourse classified as stream order 4 or higher under the Strahler stream order classification system; or
- (b) if a watercourse mentioned in paragraph (a) is permanently diverted under—
 - (i) a condition, or proposed condition, of an environmental authority mentioned in the Water Act 2000, section 98; or
 - (ii) a water licence or proposed water licence under the Water Act 2000;
 - (iii) the watercourse as permanently diverted.

Three 'relevant watercourses' with a Strahler stream order of four or greater, have been identified with the potential to interact with the SSM residual voids. The identified 'relevant watercourses' that were modelled as part of the voids in flood plains assessment include:

- Stephens Creek
- Scott Creek
- Roper Creek

5.3 Voids in flood plains landform

The intent of the voids in flood plain modelling is to represent the flood plain within the tenure without 'artificial features', as defined by the EP Regulation. As operations at SSM commenced in 1979, prior to the availability of BMA LiDAR imagery, a single source of high-definition pre-mining topographical information was not available. The pre-mining digital elevation model (DEM) landform used for the purpose of voids in flood plains modelling was developed using a combination of BMA LiDAR datasets and publicly accessible, Geoscience Australia one second Shuttle Radar Topographic Mission Hydrological DEM topographical data. Where appropriate, terrain modifiers were used to assist with alignment of the different topographical datasets and to assist with definition of watercourses within areas of the DEM that relied upon the publicly accessible topographic data.

As required for this assessment, off-tenure artificial features that have the potential to impact the flood plain were assessed for their potential to influence flood hydraulics at SSM and where appropriate, have been included within the modelled landform. One off-tenure artificial feature, the township of Dysart, was assessed as potentially influencing flooding at SSM and was incorporated within the modelled landform.

Surrounding off-tenure roads and rail lines were not included within the model as they were assessed not to have a material effect on the 0.1% AEP flood levels within the SSM tenure.

5.4 Modelling

Hydrologic modelling was undertaken to estimate runoff hydrographs at various locations throughout the Stephens, Scott and Roper creek catchments. The model was developed using the Watershed Bounded Network Model, which is an industry standard rainfall-runoff routing software package. As the catchments of Stephens, Scott and Roper creeks are tributaries of the Isaac River, a Watershed Bounded Network Model of the Isaac River was developed. The model domain included the Goonyella (130414A) and Deverill (130410A) stream gauges to allow calibration. Sub-models of the Isaac River model were developed for the catchments of Stephens and Scott creeks (for the purpose of this hydrologic modelling, referred to as the Norwich Park Sub-model) and Roper Creek Sub-model. These sub-models provided focus on the SSM area and its catchments, allowed delineation for the DEM, and application of Aerial Reduction Factors relevant to the site's catchment areas.

Hydraulic modelling of the catchment was developed for the purpose of assessing pre-mining flood extents. The industry standard hydrodynamic modelling software TUFLOW (build 2020-10-AA) was utilised for the hydraulic modelling. The hydraulic models developed as part of this assessment included the Norwich Park Model (Stephens and Scott creeks catchments) and the Roper Creek Model (Roper Creek catchment).

Further details of the voids in flood plain modelling are contained in Appendix H.

5.5 Results

The voids in flood plain modelling, identified the Lotus/Campbell and Gilbert residual voids encroach into the floodplains of Stephens and Scott creeks. The alignment of the Stephens Creek has been diverted around the mining activities to allow for coal extraction, the original alignment (as modelled within the voids in flood plain assessment) is within the mined-out area and spoil dumps. The majority of the SSM residual voids remain outside of the flood plains. Noting the voids in flood plains modelling utilises the pre-mining topography.

The rehabilitation flood modelling of the diversion of Stephens Creek, (Section 6.1.2) demonstrates the final closure landform provides for flood protection for the residual voids up to and including a 0.1% AEP flood level. This final closure landform design, therefore ensures the proposed location of the residual voids minimises risks to the environment.

Relationship with PRCP schedule

The location and extent of the residual voids, combined with other aspects of the landform design, including increasing the set-back from the ML boundary and watercourses, partial backfill of final voids, and placement of spoil dumps and landforms, provides protection to the residual voids from flood events up to and including a 0.1% AEP and minimises risks to the environment, as per the transitional requirements.

6 REHABILITATION AND MANAGEMENT METHODOLOGY

Legislative Requirement

In accordance with section 126C(1)(e) and (i), the rehabilitation planning part of the PRC Plan must:

- For each proposed post-mining land use for land, state the proposed methods or techniques for rehabilitating the land to a stable condition in a way that supports the rehabilitation milestones under the proposed PRCP Schedule.
- For each proposed non-use management area, state the proposed methodology for achieving best practice management of the area to support the management milestones under the proposed PRCP Schedule for the area.

PRCP Guideline (Section 3.6)

The proposed rehabilitation or management methodologies will underpin the development of the milestone criteria and support how the proposed PMLU will be achieved or the NUMA will be managed. As per section 126C(1)(j) of the EP Act, the administering authority requires information describing how the proposed rehabilitation or management methodologies have been developed and will be implemented.

This section identifies a number of studies or reports that must be provided in the proposed PRC Plan. If any of the required information outlined below is not relevant to the specific operation, the applicant must provide justification in the PRC Plan outlining why the information is not required.

PRCP Guideline (Section 3.6.1)

This section outlines the range of information that the administering authority considers is necessary to underpin the development of the rehabilitation or management methodologies applicable to new and existing mines for most domains. The applicant must include the information as appendices to the rehabilitation planning part.

6.1 General rehabilitation practices

6.1.1 Hydrogeology

PRCP Guideline (Section 3.6.1)

Assess the hydrogeology of the site and all connected strata, and develop a conceptual model of the mine site's groundwater systems. This information must be integrated into the design of rehabilitation strategies and choice of PMLU or NUMA.

As mentioned in Section 1.2.5, a hydrogeological assessment including conceptual and numerical modelling, has been undertaken to support the development of this PRCP. The detailed report - *Saraji South Mine Transitional PRC Plan Hydrogeology Assessment* (SLR, 2024b) is provided in Appendix D.

The key hydrogeological units present within and immediately surrounding SSM are summarised in Section 1.2.5 and include:

Cainozoic sediments:

- Quaternary alluvium unconfined aquifer (sporadically water-bearing strata of permeable unconsolidated sand or gravel) localised along watercourses, and regionally along the course of the Isaac River
- Quaternary to Tertiary non-alluvial sediments and weathered units (collectively termed 'regolith') –
 unconfined unit with limited saturation at SSM and in the Roper area

Permian:

- Low permeability interburden and overburden units with aquitard properties
- Coal seams that exhibit water bearing properties associated with both primary porosity and the more dominant secondary porosity through cracks and fissures. The coal seams within the Moranbah Coal Measures are the primary aquifer at SSM

 Whilst the coal bearing sequence at SSM is predominately German Creek Formation (Section 1.2.3) due to a facies change, they are collectively referred to as the Moranbah Coal Measures in relation to groundwater

Additional details on the hydrogeological units, groundwater quality and groundwater use are contained in Section 1.2.5.

6.1.1.1 Groundwater modelling

To support the assessment of potential groundwater impacts, numerical groundwater modelling was undertaken in accordance with the Australian Groundwater Modelling Guidelines (Barnett, et al., 2012), the Murray Darling Basin Commission Groundwater Flow Modelling Guideline (Aquaterra, 2001), and the Independent Expert Scientific Committee Explanatory Note for Uncertainty Analysis (IESC, 2018). The numerical model was developed using a graphical user interface in conjunction with the modelling software MODFLOW-USG, which is distributed by the United States Geological Survey.

The numerical groundwater model presented within this PRCP, was built specifically to support the development of the PRCP. The development of the numerical groundwater model is documented within *Saraji South Mine Groundwater Modelling Technical Report* (SLR, 2024c) (Appendix E).

The objectives of the predictive groundwater numerical modelling were to:

- Assess the nature (timing and elevation) of void water level recovery (i.e. time to reach post-mining equilibrium and definition of that equilibrium level), and associated groundwater fluxes to/from voids
- Assess the groundwater levels at post-mining equilibrium in all relevant hydrogeologic units, and associated impacts on current and potential future receptors (drawdown, water quality and groundwater flow direction)
- Assess impacts to alluvial and Tertiary hosted groundwater and any identified potential receptors
- Assess the influence on potential groundwater receptors associated with surface drainage lines

Climate change considerations have been included within the modelling and have been based on the *BMA Climate Change Adaption in Mine Water Planning and Hydrologic Assessments Guideline* (BMA, 2023). This included the review of three relevant climate models (ACCESS1-0Q, GFDL-CM3Q and MPI-ESM-LRQ) for both the 4.5 and 8.5 Representative Concentration Pathways (RCPs). From the climate model review, the following three climate scenarios (Table 30), representative of the modelled reasonable range of influence on the voids, were used to generate three sets of groundwater model predictions.

Table 30: Modelled climate scenarios as part of the groundwater assessment

Climate model	Intergovernmental Panel on Climate Change RCP Scenario
ACCESS1-0Q	4.5
MPI-ESM-LRQ	4.5
MPI-ESM-LRQ	8.5

The predominant identified influence from climate change on groundwater was associated with the void lake levels and their effect on groundwater hosted within the in-pit spoil prior to recovery. Upon stabilisation of the void lakes and groundwater elevations, the modelling identified negligible difference in hydrogeological conditions between the assessed climate scenarios. Therefore, the hydrogeological information presented within the PRCP is focused on the mid climate change scenario (MPI-ESM-LRQ 4.5). Additional information on the model results for the other climate change scenarios assessed are detailed in Appendix D.

Alignment of the void water balance model and the groundwater model was achieved through an iterative modelling approach, as there are no current commercial modelling packages that can undertake both the water balance and groundwater modelling. Due to the complexity of the groundwater connections within the Roper and East Pit residual voids, the alignment of the models commenced with a surrogate water balance model simulating the end of mining void lake and groundwater conditions, from which the results were applied with constant head boundary conditions to the groundwater model. The outputs of the groundwater model were input back into the surrogate water balance model and the process was repeated until alignment between the

iterations had been achieved and thereby providing a refined starting point for the alignment of the actual residual void water balance model and the groundwater model. The alignment of the models then progressed through running of the groundwater fluxes to the residual voids within the water balance model, followed by rerunning the output void lake levels in the groundwater model. This process was repeated until the variance between the model runs had sufficiently reduced.

The model alignment process showed the water balance and groundwater models within the area of the northern three residual voids (Lotus/Campbell, Gilbert and Price/Leichardt) were appropriately aligned for the purpose of developing this PRCP.

The area containing the Roper residual voids and East Pit residual voids had greater variability between the model runs due to the complexity of the groundwater connections between the residual voids. Within the time available under the transitional PRCP notice, additional alignment of the models could not be achieved with the available data. Additional data collection and further development of the closure landform design within the Roper area (Section 1.4.1.2) will assist with further development and alignment of the models, including for the area containing the East Pit residual voids. The additional data collection and further development of the models for the Roper area is to be completed as part of the studies being undertaken to address the knowledge base gaps and prior to the commencement of mining of East Pit (Section 6.1.1.6).

During the iterative model alignment, the data was assessed and used to inform changes in the landform design. The landform changes included the backfilling the ends of voids for flood protection, and other works to further minimise the residual voids' catchments. The closure landform for the northern portion of the site (Lotus/Campbell, Gilbert and Price/Leichardt) establishes residual voids that provide competent long-term groundwater management for the surrounding mining disturbance areas. The network of residual voids, which provide the sink conditions, is an important control for post-mining water management. These residual void groundwater sinks capture leachate from spoil dumps, and other mining related disturbances and prevents the interconnection of groundwater aquifers hosting different water quality. Retaining the residual voids provides protection to the surrounding environment by capturing leachate and separating more saline deeper groundwaters aquifers from the shallower units.

Appendix E details the groundwater model development for the Roper area, however due to the additional data collection and studies required to close the critical knowledge base gaps to further develop the rehabilitation and management plan for the area, the results for the Roper voids are not presented within the hydrogeology section of the PRCP.

6.1.1.2 Residual void groundwater inflow

Groundwater levels and gradients surrounding the residual voids are controlled by the predicted residual void lake levels. The majority of the residual void lake inflows are sourced from surface water flows and direct precipitation, with groundwater inflows contributing only approximately 10% to 20% of the total volumetric inflow, except for East Pits where groundwater inflows represent approximately 50% (Appendix D). This is consistent with observations during mining, where groundwater inflows to the existing pits are/were passively removed via evaporation from the walls of the voids and do not require active pumping. Outflows from the established residual void lakes will generally be controlled by the evaporation.

The predicted equilibrium groundwater inflows to each of the residual voids for the three climate scenarios are presented in Table 31. Model results indicate that for most residual voids >79% of the groundwater inflows entering the residual voids comes via the spoil. Of the spoil sourced groundwater inflows to the residual voids, between 2% and 29% of the volume originates as local recharge applied to the spoil with the remainder coming from natural geological formations flowing through the spoil before entering the residual voids. Price/Leichhardt is distinct, having a much lower contribution to the void from spoil, with around 50% of the total inflows coming from local recharge applied to the spoil and the other 50% originating from natural geological formations.

Table 31: Equilibrium groundwater inflow to the residual voids

		Equilibri	ium Inflow Rat (m³/day)¹	Equilibrium Inflow Rate	Equilibrium	
Climate Scenario	Residual Void⁴	From Natural Geological Formations into Spoil	From Local Recharge on Spoil	Total Inflow from Spoil to Residual Void ²	- Natural Geological Formations (m³/day)³	Inflow Rate - Total (m³/day)
Wetter	Lotus/Campbell	289.2	118.7	409.0	26.4	435.3
	Gilbert	201.6	62.5	265.5	30.6	296.1
	Price/Leichardt	53.3	66.1	119.9	120.6	240.5
	East Pit 1	346.0	7.9	353.9	12.6	366.5
	East Pit 2	102.0	5.8	107.8	12.4	120.3
Mid	Lotus/Campbell	295.6	118.7	415.3	27.7	443.1
	Gilbert	205.4	62.5	269.4	31.6	300.9
	Price/Leichardt	58.6	66.1	125.3	116.8	242.1
	East Pit 1	261.2	7.9	269.2	17.3	286.4
	East Pit 2	64.7	5.8	70.5	12.2	82.7
Drier	Lotus/Campbell	299.0	118.7	418.5	27.7	446.3
	Gilbert	208.2	62.5	271.8	30.8	302.7
	Price/Leichardt	60.0	66.1	126.6	111.6	238.2
	East Pit 1	202.8	7.9	210.8	18.1	228.9
	East Pit 2	21.3	5.8	27.1	7.0	34.2

^{1.} Includes a component of groundwater from natural geological formations that moves into spoil, and a component of groundwater derived from local recharge on spoil, before discharging to the residual void lakes.

Post-mining and dewatering of the voids, groundwater recovery and void lake establishment occurs. The more dynamic void lakes, which are primarily established through rainfall derived sources such as surface runoff and direct precipitation, fluctuate in height depending on climatic conditions. Groundwater recovery occurs relatively slower, and surrounding the residual voids, groundwater recovery is governed by the height of the void lakes. During the initial period post-mining, the fluxes of groundwater to and from the voids are largely a function of the recovering groundwater levels within the spoil and the lake levels that fall and rise periodically. The numerical model predictions for groundwater recovery to levels that generate long term stable net inward hydraulic gradients (i.e. groundwater levels that are higher than the range of fluctuations in the residual void lake levels

^{2.} Any volumetric discrepancy between total inflow from spoil and the sum of the spoil inflow components is related to small ongoing residual changes in spoil storage occurring in the model as well as losses to evapotranspiration through spoil and rounding errors. Such discrepancies are typically less than 1% of the total spoil inflow.

^{3.} Directly from natural geological formations into residual void lakes.

^{4.} Due to the uncertainty within the models for the Roper residual voids, and the complex groundwater connections between the individual voids, the data produced by the model is not considered to be suitable to inform this transitional PRCP and therefore the results for the Roper residual voids are not included.

for the mid climate change scenario) sufficient to maintain groundwater inflows from the spoil to the voids postmining are as follows:

- Lotus/Campbell residual void 24 years
- Gilbert residual void 6 years
- Price/Leichardt residual void 0 years (model indicates no periods of net outflows)
- East Pit 1 residual void 14 years
- East Pit 2 residual void 39 years

The numerical model results for net fluxes between the residual void lakes and the groundwater hosted in natural geological formations in the recovery period immediately post-mining, indicate that outward fluxes from the void lakes to natural geological units only occurs within the first six years post-mining within the East Pit voids. Lotus/Campbell, Gilbert and Price/Leichardt voids maintain net inward fluxes from the natural geological formations post-mining.

As detailed in Table 31, once the groundwater and void lakes stabilise, the residual voids establish as long-term groundwater sinks to both the spoil and natural geological formations.

The residual void water quality modelling (Appendix M) indicates that the pH of the void water, once the lakes have established, will be relatively stable over time with slightly alkaline to alkaline conditions prevailing. TDS is modelled to increase within the void lakes over time because of evapo-concentration processes. Within the period immediately post-mining (~39 years) where outflows from the void lakes may occur, modelled TDS concentrations within the void lakes are within or below the TDS ranges recorded within the regional Moranbah Coal Measures (average TDS of 7,982mg/L, ranging between 1,314mg/L and 19,200mg/L). Therefore, fluxes of water out of the void lakes to the groundwater aquifer that will be establishing within the in-pit spoil, will not adversely impact the groundwater quality within the spoil or the surrounding Permian hosted aquifers.

6.1.1.3 Groundwater levels

Modelled post-mining equilibrium groundwater levels are illustrated in Figures 7-13 to 7-18 of Appendix D.

Pre-mining groundwater elevations are not well understood as mining operations at SSM commenced in 1979 and prior to groundwater monitoring being undertaken. Therefore, pre-mining potentiometric surface maps cannot be generated due to the absence of data. However, based on the regional setting and lithology, pre-mining groundwater flows within the shallower hydrogeological units would likely have been a subdued reflection of surface topography with flows generally in a west to east direction. Permian hosted groundwater pre-mining would have also flowed generally in a west to east direction following the coal seam dip.

Post-mining, the groundwater model results indicate the water table will remain drawn down in the immediate vicinity of the Lotus/Campbell, Gilbert, Price/Leichardt and East Pit residual voids in the long term. The groundwater levels in the proximity of these residual voids will be driven by the ongoing groundwater discharge to the residual void lakes and the loss of water from the void lakes through evaporation. Long term, inwards groundwater flow gradients will be maintained for the majority of the tenure within the proximity of the northern three voids post-mining. The Roper area will be subject to additional technical studies to better understand and refine the rehabilitation and management plan (Section 6.1.1.6).

The following summarises the model predicted post-mining stabilised groundwater levels for the coal seams at SSM:

- Where present within the SSM area, the Fort Cooper coal seams are predicted to remain dry
- The Q seam is predicted to remain 'dry' in the long term across most of the SSM area, with saturation generally commencing immediately to the east of the EA boundary
- The P Seam is predicted to remain 'dry' across much of the SSM area, however remains saturated along the eastern margin. Flow gradients towards the Gilbert, Price/Leichardt and East Pit residual voids is apparent
- The H Seam remains unsaturated to the west of the Lotus/Campbell, Gilbert, Price/Leichardt and Roper residual voids. Saturation is generally present to the north, south and east of these voids with inward

hydraulic gradients evident surrounding the East Pit residual voids and to the west of the Lotus/Campbell, Gilbert and Price/Leichardt residual voids

• D Seam levels show saturation across most of the SSM area, and inward hydraulic gradients surrounding the Lotus/Campbell, Gilbert, Price/Leichardt and East Pit residual voids

Predictive hydrographs (Appendix D, Figures 7-19 to 7-31), generated from the numerical groundwater model, have been used to evaluate changes in groundwater levels over time immediately adjacent and to the east of the residual voids. These predictive hydrographs indicate that groundwater levels within the saturated seams, to the east of the Lotus/Campbell, Gilbert and Price/Leichardt and East Pit residual voids, are above the predicted lake levels. The base of the unsaturated seams is also above the predicted lake levels. This confirms these residual voids will act as long-term groundwater sinks. The hydrographs also show the majority of groundwater drawdown is a result of dewatering undertaken during mining operations and associated lag effects.

Predictive hydrographs (Appendix D, Figures 7-33 and 7-34) for the water table at the identified potential GDE locations adjacent to the SSM area (Section 1.2.5.5), identified only two locations with groundwater within 20m of the ground surface along Stephens Creek up and down-gradient of SSM. Groundwater levels within the potential GDE locations at the beginning of the simulation were at least 13m below ground level. The modelled depths of groundwater (i.e. >10m) indicate there is a low probability for the locations to contain GDEs that are dependent on permanent access to groundwater. The hydrographs also indicate that water table drawdown in the vicinity of the potential GDEs is a result of the approved mining and not the proposed closure landform. Any facultative ecosystem use of temporary groundwaters hosted in the alluvial material located within the watercourses, are not anticipated to be adversely impacted as this temporary alluvial groundwater is recharged through losing streams during flows and this recharge will still occur during flow conditions.

Model results, for water supply bores with sufficient information to attribute a source aquifer, indicate that registered bores (RN38547, RN43061, RN89469, RN89470, and RN90014R) located in the Fort Cooper Coal Measures to the east of SSM, within ~3km of Lotus/Campbell, ~2km of Gilbert and ~2.5km of Price/Leichhardt residual voids, have a relatively significant amount of drawdown in the long-term post-mining. This drawdown at the impacted registered bores takes hundreds of years for the maximum drawdown to occur and is associated with lag effects from mine dewatering and regional scale influences represented in the model (i.e. other mining activities). The maximum drawdown predicted at the registered bores is greater than the relevant 5m drawdown bore trigger threshold for consolidated aquifers (i.e. the Fort Cooper Coal Measures) as per the *Water Act 2000*. These drawdown impacts to registered bores will need to be reassessed as part of on-going updates to the groundwater model. The model updates will account for actual mining progress/dewatering and the status of the bores at the time of drawdown, noting that impacts are currently predicted to occur well outside of the operational life of the bores. The water supply bores RN84538, RN136092, and the unregistered House Bore were located outside of the model boundary, and therefore were not included in the model assessment.

The predictive groundwater model results indicate the northern residual voids (Lotus/Campbell, Gilbert, Price/Leichardt) and the East Pit residual voids within the proposed final closure landform, create long-term groundwater sinks that capture seepage from the spoil dumps, and other operational areas within the proximity of the residual voids. The residual voids provide an important landscape feature that provides for the management of groundwater in the post-mining landscape. The residual voids collect and contain groundwater seepage from the mining disturbed areas and prevent future interconnection of groundwater aquifers with different water quality. Removing, partially or completely, residual voids from the proposed closure landform has the potential to cause environmental harm through release of contaminants to groundwaters or the interconnection of aquifers. Further backfilling of the residual voids, particularly to above the coal seams or above surrounding groundwater levels, would increase the void lake level elevation and would also increase the potential for outflows. Therefore, changes to the landform that reduce the residual voids further than already proposed, has the potential to result in poorer environmental outcomes if beneficial evaporative control of groundwater gradients is lost.

The groundwater levels for the Roper residual voids will be reassessed as part of the technical studies and model updates for the Roper area (Section 6.1.1.6).

6.1.1.4 Flow path simulation

To assist with the understanding of potential contaminant migration patterns through groundwater, an analysis of the water movement within the closure landform, based on the numerical groundwater model prepared to

support the development of this PRCP, has been undertaken. The simulation was undertaken over a 578-year groundwater recovery period post-mining. The simulation was undertaken by placing a number of particles within the model surface in the recovery groundwater model and the mod-PATH3DU code (developed by Papadopulos & Associates Inc., 2018) used to simulate particle pathways along the groundwater flow field during recovery. The mod-PATH3DU code automatically moves the particles from the model surface to the shallowest saturated layer at the commencement of the simulation.

The predicted movement of water particles in the 578-year recovery simulation are shown in Figure 7-37 of Appendix D. The model results indicate that particles located within the shallower groundwater units generally move towards the deeper Permian, and in the proximity of the northern three voids, towards the residual voids.

Flow path simulation within the southern portion of SSM confirms the complexity of the groundwater system and the interconnection of the residual voids. The flow path simulation indicates that East Pit residual voids receive inflows that originated within the Roper area. Further data collection and technical studies are required for the Roper area to improve the understanding of groundwater aquifers and to inform the development of a detailed rehabilitation and management plan (Section 6.1.1.6).

6.1.1.5 Post-mining conceptual site model

An evaluation of the groundwater source-pathway-receptor (SPR) linkages for SSM based on the modelling results for the post-mining environment where groundwater conditions have stabilised (with the exception of the Roper area), has identified the following key features:

- Void lake formation, with lake levels stabilising below the pre-mining groundwater elevations and any shallow post-Permian strata, including the base of surficial weathering and shallow hydrostratigraphic units (i.e. alluvium and Tertiary sediments/Regolith)
- Continued groundwater drawdown within the Moranbah Coal Measures and the Fort Cooper Coal Measures, associated with evaporative discharge from the void lakes, resulting in continued inwards hydraulic flow gradients in the coal measures
- Voids continue to capture any groundwater flows from spoil dumps
- Little to no impact on surficial aquifers, with predicted water level influence showing decline caused by approved mining impacts prior to closure
- Little to no impact on environmental receptors, with predicted water level influence showing decline caused by approved mining impacts prior to closure
- No impact on anthropogenic receptors, with predicted water level influence dominated by approved mining impacts prior to closure, and showing recovery post-mining

A visual representation of the post-mining conceptual site model is provided in Figure 17.

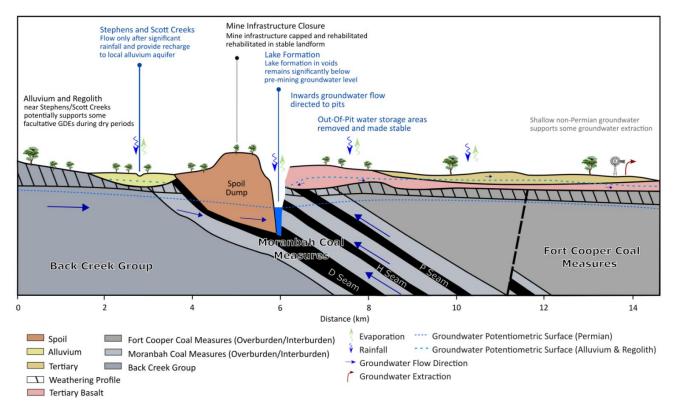


Figure 17: SSM post-mining conceptual site model (SLR, 2024a)

6.1.1.6 Roper area

The hydrogeological assessment has identified greater levels of uncertainty within the numerical groundwater model in the area containing the Roper voids. The absence of pre-mining baseline data and pre-2004 groundwater data, along with limited data from the care and maintenance period (2012 to 2022), has increased the level of uncertainty in the numerical groundwater model and impacted the alignment of the groundwater model with the void lake water balance model in the Roper area.

The risk assessment (Section 7.1.3) also identifies that additional investigation and modelling works are required to address the groundwater knowledge base gaps, to inform the development of the most appropriate controls necessary to manage the closure risk for the Roper area.

The Roper area hosts multiple voids, TSFs, water storage dams, watercourse and spoil dumps, in addition to the MIA/CHPP located immediately to the northwest, and groundwater interconnected voids located to the east and down dip (East Pit voids). The closure designs for these mining related disturbance domains are all likely to have an influence on, and be influenced by, groundwater. The interconnectedness and influence that groundwater has on these domains need to be carefully considered within the closure design for the Roper area. Rehabilitation works need to consider how any changes to the final landform will influence groundwater and how this could change groundwater recovery, flow directions and mobilisation of contaminants. For example, potential rehandle of spoil dumps to cover TSFs and rejects is likely to result in a change in the void catchments, which would lead to changes in: void lake heights; groundwater levels/gradients; level of saturation within tailings material; geochemical risks; groundwater flow patterns; and how and where contaminants could be mobilised. Lower groundwater levels could also result in void lakes, such as those in the East Pit voids, becoming sources to groundwater.

To manage risk and to achieve an acceptable rehabilitation outcome, it is imperative that additional groundwater assessment and modelling is undertaken to reduce the uncertainty within the groundwater model in the Roper area prior to the commencement of on the ground rehabilitation works. This work will need to include installation of additional monitoring infrastructure, data collection and revision of the numerical groundwater model. As groundwater is interconnected across the domains, the closure design options for the Roper area will need to consider their influence on groundwater, mobilisation of contaminants through groundwater, and geochemical risks.

The PRCP schedule rehabilitates this area as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that manages risks and achieves a stable condition at closure. Table 32 details the recommended activities and estimated timeline required to address the hydrogeological knowledge base gaps. The outputs from the groundwater modelling form part of the knowledge base gaps within the Roper area, with interdependent technical studies such as the geochemical modelling (Section 6.1.3.6) requiring the groundwater model outputs before they can be completed. The commencement of the first rehabilitation milestone and achievement of the rehabilitation milestone will be as soon as practicable once all work packages are complete. The activities will be refined as part of developing the detailed scope of works. Commencement of rehabilitation prior to the completion of the recommended activities and earlier than practicable, would be contrary to the purposes of the EP Act and would result in potential for worse environmental outcomes.

An amendment will be submitted if the improved hydrogeological understanding results in changes to the PRCP schedule.

Table 32: Recommended Roper area hydrogeological work package activities

Activity	Details	Estimated duration (months)
Drill program planning and earthworks to establish safe access	Assessment of groundwater model uncertainty and groundwater datasets to develop detailed scopes of work, including bore installation locations, to close knowledge gaps and reduce model uncertainty to a level suitable to support a detailed closure design.	24
	Earthworks, to allow safe access to bore installation and physical sample locations.	
	Commissioning and scheduling of drilling program, clearances and approvals.	
Bore drilling, installation and monitoring - initial	Drilling of bores to characterise geology, install groundwater monitoring infrastructure and collection of initial rounds of groundwater data.	12
Bore drilling and installation - iterations	Scheduling and installation of additional groundwater monitoring bores, if required, where the initial campaign identified remaining knowledge gaps.	6
Groundwater monitoring	Monitoring of groundwater levels and quality.	Minimum 24
Revision of models and particle tracking	Update groundwater model build and calibration utilising additional data and undertake alignment of the groundwater model and void lake water balance models.	30
Groundwater modelling, closure options assessment	Assess groundwater and water balance outputs and suitability of the closure landform design to achieve an acceptable post-mining outcome (including interconnected risks such as contaminant migration, sink/sources, surface water catchments, etc).	
	Groundwater model and water balance input to hydrogeochemical modelling (Section 6.1.3.6).	
	Where the modelling results indicate unacceptable closure outcomes, revision of the landform design and re-modelling will be required to assess alternative closure options. This step is repeated until a closure landform design that achieves acceptable post-mining outcomes is achieved.	

Relationship with PRCP schedule

Within the residual voids in the northern portion of the site (Lotus/Campbell, Gilbert and Price/Leichardt) and in the area immediately surrounding the East Pit residual voids, groundwater will flow to the residual voids, which act as groundwater sinks. It is not anticipated that groundwater in these areas will require any active management post-mining. Confirmation of groundwater quality, and the relationship between the void lakes and groundwater elevations to demonstrate the development of the residual voids as sinks, will be completed through groundwater monitoring and predictive groundwater modelling.

Further knowledge base data collection and technical studies are required in the Roper area to improve the alignment and uncertainties currently in the groundwater model for this area and to allow informed rehabilitation and management activities to be undertaken.

6.1.2 Flooding

PRCP Guideline (Section 3.6.1)

Section 3.4 of this guideline requires flood plain modelling for the purpose of voids located within a flood plain being rehabilitated to a stable condition. In addition to this, the applicant must also assess the flooding susceptibility and influence across the site. If flooding is a consideration, develop a hydrologic model of the catchment and a hydraulic model of the proposed mining area. Knowledge of flooding is integral to the rehabilitation planning process, including the placement and design of mine domains.

A rehabilitation flood assessment, including consideration of flow alteration, modelling flood levels for a range of design storm events and development of a flooding risk profile, has been undertaken to support the development of this PRCP. The detailed report – Rehabilitation Flood Modelling, Saraji South (Norwich Park) Mine (WMS, 2024), is provided in Appendix I.

The flood modelling was undertaken on an iterative approach with the closure landform design development. Information from the initial round of rehabilitation flood modelling was used to inform further development of the closure landform design. The final closure landform design included refinements comprising of partial backfill of the residual voids, increased stand-off distances from tenure boundaries/watercourses and removal of culverts and other infrastructure from watercourses/floodplains. Upon finalising the landform design, the flood modelling was re-run and the flood risk profile and other interpretations amended to reflect the final closure landform design, which is presented within this PRCP.

6.1.2.1 Flood modelling

The hydrologic modelling for Stephens, Scott, Downs and Roper creeks undertaken to support this PRCP utilised the existing flood modelling for SSM (WRM, 2020), which was completed using industry standard software TUFLOW and XP-RAFTS. A review of the models by WMS indicated that they were fit for purpose and were used as the starting point for this assessment. As no previous flood modelling for Rolf Creek in the proximity of SSM was available, a new XP-RAFTS/TUFLOW model was developed for this assessment.

An assessment of Roper Creek utilising the existing modelling identified: no significant PRCP landform features present within the 0.1% AEP flood extent; the catchment is predominantly outside of the EA area; and Roper Creek runs to the south and not through the EA area. Therefore, flooding associated with Roper Creek does not present an unacceptable risk to the post-mining landform/land uses and was not further considered within the rehabilitation flood modelling assessment.

TUFLOW 2D hydraulic models were developed to determine flood behaviour around the closure landforms. TUFLOW (version 2023-03-AA) is an industry standard software hydraulic modelling package. Hydraulic models incorporating the closure landform design were developed for Stephens, Scott, Downs and Rolf creeks and run for the 39%, 2%, 1%, 0.1% AEP and probable maximum flood (PMF) events.

To evaluate alteration of flows, hydraulic models were also developed for the pre-mining landform for Stephens, Scott, Downs and Rolf creeks. The pre-mining landforms utilised were consistent with those developed for the voids in flood plain modelling (Section 5). Due to the age of operations at SSM (commenced 1979), a combination of BMA LiDAR and the publicly accessible one second Shuttle Radar Topographic Mission

Hydrological DEM topographical data (Geoscience Australia) were utilised to develop the pre-mining DEM. The resolution of the publicly accessible topographical data from pre-1979 is low but represents the best information available. Terrain modifiers were read into the model to better define watercourses due to the low resolution of the available pre-1979 topographic data.

Climate change considerations, in-line with the *BMA Climate Change Adaption in Mine Water Planning and Hydrologic Assessments Guideline* (BMA, 2023), were included within the model through running of the following three climate change scenarios for the 2061 to 2099 period for both the 1% AEP and 0.1% AEP:

- RCP 2.6 50th percentile (6% rainfall intensity increase)
- RCP 4.5 50th percentile (11% rainfall intensity increase)
- RCP 4.5 90th percentile or RCP 8.5 50th percentile (20% rainfall intensity increase)

Further details on the model set up, assumptions, sensitivity testing, hydraulic roughness catchments, critical duration assessment, etc. are detailed in Appendix I.

6.1.2.2 Flood levels and rehabilitation domains

The modelled flood heights in the proximity of the residual voids indicate that all the residual voids are immune from flood ingress up to and including the 0.1% AEP, including upper climate change scenario RCP 4.5 P90 (20% rainfall intensity increase). This was achieved through the iterative landform design process that included the placement of backfill in the ends of select residual voids and alteration/inclusion of other landforms that minimise the potential for environmental harm caused via inundation of the residual voids.

The probable maximum precipitation (PMP) modelled events do indicate flood water ingress into residual voids. However, the modelled inflows to the voids in a PMP event will not exceed the residual void's storage capacities, overtop the voids, interconnect different hydrogeological units, or alter the long-term sink behaviour of the voids. The modelled PMF event represents an extreme case of flooding where there would be significant impact to the wider region, not just SSM, including damage to regional infrastructure and widespread inundation. The loss of some floodwater to the residual voids in a PMF scale event would not adversely impact environmental flows or surrounding land users.

The modelling has identified several locations where floodwaters spill from the watercourses and interact with the rehabilitation landforms. The flood water interaction with the spoil dumps is generally at the extremity of the flooding extent and therefore generally have relatively low velocities and flood heights. Landform design considerations, including for those areas subject to inundation, are detailed in Section 6.1.5.

Figures showing the modelling results, including flood levels, stream powers and velocities, are contained in Appendix I.

6.1.2.3 Alteration of Flows

For the assessment of downstream pre- and post-mining flow alteration, peak flows and total volumes for the closure landform and the pre-mining landform scenarios were extracted. For this comparison a location immediately upstream of the confluence with the Isaac River was utilised. As the mine site is located within the upper portion of the catchments, a comparison of flows immediately below the mining disturbance exaggerates the influence of the closure landform due to the relatively small upstream catchments. For Rolf Creek the upstream catchment is located wholly within the EA, and therefore, there is no upstream catchment. For the purpose of this, pre and post-mining flow assessment, downstream locations immediately upstream of the Isaac River have been used, which is more representative of the change in flows to downstream receptors.

Peak flows and total volumes through the selected downstream locations are summarised in Table 33.

Table 33: Peak flow comparison between the pre-mining condition and closure landform, immediately prior to the confluence with the Isaac River

		Peak flow (10 ² m ³ /s)			Total volume (GL)			
Model	Event	Closure landform	Pre-mining condition	% change	Closure landform	Pre-mining condition	% change	
Stephens Creek	39% AEP	7	7	0	350	351	0	
Cleek	2% AEP	28	28	0	1,265	1,271	0	
	1% AEP	39	39	0	1,884	1,895	-1	
	0.1% AEP	63	63	0	2,821	2,839	-1	
	0.1% AEP CC RCP8.5 P90	76	76	0	3,440	3,461	-1	
Scott Creek	39% AEP	9	9	0	337	336	0	
	2% AEP	34	34	0	1,314	1,310	0	
	1% AEP	48	48	0	1,856	1,857	0	
	0.1% AEP	77	77	0	2,962	2,965	0	
	0.1% AEP CC RCP8.5 P90	97	97	0	3,601	3,603	0	
Downs Creek	39% AEP	3	3	0	47	48	-2	
Cleek	2% AEP	6	6	0	103	105	-2	
	1% AEP	9	9	0	187	191	-2	
	0.1% AEP	16	17	-6	230	236	-3	
	0.1% AEP CC RCP8.5 P90	22	23	-4	284	291	-2	
Rolf Creek	39% AEP	0.6	0.6	0	31	23	-9	
	2% AEP	4	4.3	-7	77	85	-9	
	1% AEP	6.4	7.1	-10	134	148	-9	
	0.1% AEP	12.1	13.1	-8	170	188	-10	
	0.1% AEP CC RCP8.5 P90	15.6	17.1	-9	213	236	-10	

The assessment of changes to downstream flows between pre- and post-mining landforms indicate the following:

- Stephens and Scott creeks, which carry the largest flows through the site, have negligible changes to flows
 and volumes. These creeks support the largest catchments and the reduction in catchment within the postmining landform does not materially impact the overall volumes and flows.
- Downs Creek comparison indicates a maximum decrease in flows of 6% and volume of 3%, which occur
 during the modelled 0.1% AEP event. For smaller rainfall events, where there is a smaller flood extent and
 the post-mining landform presents less restriction to flows, the change in flows is negligible and volumes
 only decrease by 2%.
- As the entire upper catchment of Rolf Creek is located within the EA and includes the Roper and East Pit residual voids, the percentage decrease in flows and volumes are magnified by the relatively smaller volumes and overall catchment size. Volumes and flow rates within Rolf Creek are an order of magnitude smaller than Scott and Stephens creeks. The pre- and post-mining flows and volumes decrease by up to 10% within Roper Creek, which is consistent with the catchment lost to the residual voids in the post-mining landform. As noted within Section 1.4.1.2, the Roper area requires additional data collection and technical studies to enable development of the detailed rehabilitation and management plan and design for the area. Any changes to the catchments of the Roper residual voids as part of the detailed rehabilitation and management plan would alter the flows and volumes within Rolf Creek in the post-mining environment.

Flows upstream of the mine site within Stephens, Scott and Downs creeks are considered unaltered by the final closure landform. As the headwaters of Rolf Creek are located within the EA area, there is no upstream catchment/flows from the mine site for Rolf Creek.

6.1.2.4 Flood risk profile

A flood risk profile was developed based on the rehabilitation flood modelling results. Details of the flood risk profile are contained in Appendix I and the SSM PRCP risk assessment is summarised in Section 7.

Through the iterative closure landform and modelling approach, the closure landform was developed to minimise the potential for environmental harm and to create a stable landform. Changes to the closure landform through this iterative approach included the placement of backfill in the ends of residual voids where flood waters up to a 0.1% AEP plus climate change could enter, and changes to the landforms to direct floodwaters away from the residual voids. As a result of this process, the flood risk profile identified low risk levels associated with flooding and the SSM closure landform. Therefore, no critical controls are required.

6.1.2.5 Roper area

The proposed closure landform in this PRCP sufficiently manages the flooding risk in the Roper area. Further technical studies may require revision of the closure landform design within the Roper area to manage risks identified and achieve a stable condition e.g. to manage catchments and potential rehandle of spoil dumps for TSF and rejects cover. The flood modelling will be reviewed during the assessment of alternative closure plan options and updated if required. An amendment will be submitted if there are any associated changes to the PRCP schedule.

Relationship with PRCP schedule

The interaction between flooding and the proposed final closure landform presents a low risk. The closure landform provides an appropriate level of protection from inundation to the residual voids, flooding does not adversely impact on the stability of the final closure landform and cumulative flows from the catchments into the Isaac River are similar to pre-mining conditions.

6.1.3 Waste characterisation

PRCP Guideline (Section 3.6.1)

Characterise mine wastes in a report that describes the likely physical behaviour and chemical reactivity of the waste materials under the conditions in which they would be stored. The report must address the constituent elements present, and their likely future speciation and mobility.

All mined material should be classified on its propensity to be potentially acid or non-acid forming, to generate neutral metalliferous or saline drainage, and its susceptibility to weathering.

A material characterisation assessment has been undertaken to support the development of this PRCP. The detailed report – *Saraji South Mine PRCP Environmental Geochemical Characterisation and Risk Assessment of Mineral Waste* (BHP, 2024), is provided in Appendix J.

6.1.3.1 Background

SSM has three main types of mineral waste:

- Spoil (overburden and interburden) includes weathered waste (Tertiary and Permian-age) and fresh (unweathered) waste (all Permian-age). Based on high-wall drilling data, weathered (i.e. oxidised) materials comprise a significant proportion of spoil, with the proportion of weathered to fresh varying from pit to pit (weathered spoil proportion ranging from 15% to over 50%). Therefore, weathered materials comprise a significant proportion of spoil. Spoil comprises several subtypes of material, the most relevant from a geochemical perspective being carbonaceous spoil (approximately 7% of all present and future spoil) and non-carbonaceous spoil (approximately 93% of all present and future spoil) subgroups. For the geochemical assessment, spoil samples have been sourced from drillholes (as drill core).
- Tailings were generated at the CHPP from historical processing of ROM coal and typically represent the clay, silt and fine sand fractions of ROM waste. Throughout operations at SSM, tailings have been disposed into OTD TSF and Ramp 67, both located within the Roper area. SSM coal is currently processed at SRM, and no further tailings are planned to be disposed at SSM for the foreseeable future.
- Rejects were generated at the CHPP from historical processing of ROM coal and typically represent coarser
 and rockier seam roof, partings and floor material. Rejects were trucked to Ramp 67/68 (primarily) for
 disposal. This rejects dump is located within the Roper area. An insignificant volume of rejects (up to
 0.02Mm³) are currently located on ROM pads at the Lotus-Campbell spoil area. SSM coal is currently
 processed at SRM, and no further rejects are planned to be disposed at SSM for the foreseeable future.

Coal is generally not considered mineral waste, with the exception of small quantities of sub-economic seams that may report to the spoil dump, and remnant coal exposed on pit high-walls (such as in residual voids).

Within the Roper area, only limited geochemical data is available for the tailings disposed within OTD TSF. Safe access to the in-pit Ramp 67 tailings and Ramp 67/68 rejects has not been possible to allow collection of samples and data analysis of this material. The limited available geochemical data held for the tailings and rejects indicates that there is a potential for geochemical risks to exist that would require implementation of appropriate controls and management for closure. Further technical studies are required to characterise the tailings and rejects to allow the geochemical risks to be appropriately understood. Therefore, the available geochemical data is insufficient to inform closure planning within the Roper area. The material in this area has been excluded from the waste characterisation assessment for this transitional PRCP, however pending safe access to the tailings and rejects, additional geochemical data collection will be undertaken (Section 1.4.1.2 and Section 6.1.3.6).

Mineral waste (and coal) samples from outside the Roper area, have undergone environmental geochemical characterisation and assessment with regard to their potential to generate acid and metalliferous drainage (AMD), which comprises acid drainage (AD), neutral and metalliferous drainage (NMD) and/or saline drainage (SD) (salinity due to sulphate derived from sulphide oxidation). Additionally, samples have been assessed with regard to their potential to generate salinity (non-oxidative) and, for spoil materials, their sodicity and dispersion potential. With respect to AD, each sample has been broadly characterised as either non-acid forming (NAF) or potentially acid forming (PAF). Residual voids and spoil dumps are the mine domains representing potential sources of AMD/salinity at SSM, and which have a direct relevance to mineral waste characterisation and management at SSM at closure.

6.1.3.2 Geochemical assessment of mineral waste

The geochemical characteristics of each waste type (and coal) have been assessed with respect to their ability to generate AMD by leveraging on historical geochemical data (defined as pre-2019), augmented with data acquired through an aggressive sampling and analytical program (2019 - 2024) designed to close identified knowledge gaps and fulfil the PRCP requirements. Overall, the geochemical data available to assess the geochemical properties of key mineral waste types and associated landforms at SSM include:

- 1,105 samples of interburden, overburden, roof/floor and partings tested to assess the AMD hazard; and
 1,497 samples tested to define the salinity hazard, with a subset of overburden/interburden samples assessed for dispersivity and sodicity. The overburden/interburden samples were selected from drill cores that are representative of the vertical and lateral geological (lithological) variability encountered at SSM.
- 45 samples of 'aged' rejects tested to assess AMD and salinity hazard. Samples are representative of 'aged' rejects located at Lotus-Campbell spoil area.
- 68 coal samples tested to assess the AMD hazard; and 95 samples tested to define the salinity hazard. The
 coal samples were selected from drill cores that are representative of the vertical and lateral geological
 (lithological) variability encountered at SSM.

The environmental testing protocol included a variety of analytical techniques that are consistent with industry and regulatory accepted guidelines (e.g. Global Acid Rock Drainage Guide (INAP, 2009)).

6.1.3.3 Geochemical classification of mineral waste

The test work results were used to understand the geochemical properties of each individual material type (source) and assign a geochemical classification. This data (and AMD classifications) was then used to infer the geochemical hazard posed by each mineral waste type in their relative proportions within each landform. In context, essentially all mineral waste on site is spoil. Rejects comprise less than 0.01% of mineral waste.

The key findings from the geochemical assessment are summarised as follows:

Spoil

- Approximately 89% of spoil samples were classified as NAF or were expected to be NAF (and have been classified as UC(NAF)). Spoil material represented by these samples have very low to low sulphur concentration, excess acid neutralising capacity and have a low potential to generate AMD. Eleven percent of spoil samples were classified as PAF and typically had higher (but still low to moderate) sulphur concentration and generally slightly lower acid neutralising capacity compared to NAF samples. However, the majority of the PAF samples in the spoil are associated with coal seam floor, roof and partings, which mostly report to the CHPP as rejects or they are spoil samples located very close to coal seams.
- Soluble multi-element results indicated that, under controlled laboratory conditions, leachate from NAF spoil
 has low concentration of soluble metals and metalloids, while the few PAF samples encountered can
 mobilise moderate soluble metal concentrations of Al, Co, Fe, Mn, Ni and/or Zn. If the samples tested are
 representative of the spoil produced at SSM (past, current and future), as a bulk source material, spoil is
 expected to have low capacity to generate AMD.
- Spoil is expected to generate contact water that is non-saline to slightly saline (i.e. EC less than 900μS/cm; but mostly less than 450μS/cm), almost entirely as the result of non-oxidative processes (i.e. from the dissolution of salts and not oxidation of pyrite). Spoil is also sodic to strongly sodic with potential for dispersion (based on the high sodicity values). Emerson aggregate class testing found that about 15% of the spoil samples tested displayed 'some dispersion'. The remaining bulk of the samples had Emerson aggregate class values suggesting the samples were non-dispersive.

Rejects

Aged rejects generally have low to low-moderate total sulphur and generally low to moderate acid
neutralising capacity values, resulting in about 53% of samples being classified as NAF or were expected
to be NAF (and have been classified as UC(NAF)). Of the remaining 47% of rejects samples, almost all had
a degree of uncertainty surrounding their classification and were conservatively classified as UC(PAF). Only
one rejects sample was classified as PAF. Regardless of the classification, the generally low sulphur

concentrations in rejects samples indicate that the sulphate loads from sulphide oxidation would likely be low and, overall, aged rejects have a low-moderate potential to generate AMD.

- Under controlled laboratory conditions, aged rejects subjected to freshwater (deionised water) leaching are expected to contain low to moderate concentrations of soluble metals and metalloids. Peroxide leaching which is designed to promote oxidation and AMD conditions undertaken on two UC(PAF) and one PAF-low capacity aged rejects samples showed that, when oxidised, these types of samples produced moderately to weakly acidic leachate with high soluble metals and metalloid concentrations. The results indicate that PAF rejects, when oxidised, have the potential to generate low pH leachate (AD) with elevated sulphate and soluble metal and metalloid concentrations.
- Aged rejects currently on site are expected to generate contact water that is moderately saline to saline (i.e. EC less than 4,000μS/cm; but mostly less than 2,000μS/cm), with the salinity mostly as the result of oxidative processes (i.e. from the oxidation of pyrite to produce sulphate).

Coal

• The assessment has shown that coal samples have variable geochemical properties, with approximately half of the samples conservatively classed as 'PAF'. Similar to other source material tested, coal samples with potential for AMD can release moderate concentrations of metals and metalloids in contact with water, under controlled laboratory conditions. Based on the geochemical properties and samples assessed, it expected that as a bulk source material, coal will have a moderate capacity to generate AMD.

6.1.3.4 Geochemical risk of final landforms and residual voids

Final closure landforms outside of the Roper area comprise spoil landforms and residual voids. Based on operational practices and life of asset waste management, at closure it is expected that:

- Spoil landforms will comprise spoil only (overburden, interburden). Lotus-Campbell spoil landform will also contain less than 0.01% rejects.
- High-walls will comprise overburden, interburden and coal seams (including seam roof, partings and floor).
- Pit floors will comprise coal (conservatively).

A geochemical source hazard assessment was applied to the source material types comprising carbonaceous and non-carbonaceous spoil, rejects and coal (where relevant). The source hazard score is a formula devised by the authors that leverages on the geochemical test work results to estimate the propensity (ability) to generate AMD, the AMD capacity (severity) and the quantity (volume/%) of material that could produce AMD within each landform. The AMD score for each landform was then used to estimate the likelihood of each landform to generate AMD.

The potential environmental risk posed by each landform (containing variable proportions of each mineral waste type) was determined for each landform using a SPR approach – whereby the environmental geochemical risk is determined taking into account the geochemical source hazard of the landform, the plausible environmental and human health receptors of AMD from the landform and the plausible pathways between the source (landform) and the receptor. The outcome of this assessment informed development of appropriate management and rehabilitation measures for relevant landforms at closure.

Potential pathways and receptors for AMD and salinity have been identified for all final landforms at SSM, except the Roper area. Details on the identification of pathways and receptors are found in Section 6.1.1 (Hydrogeology) and Appendix D.

For the purpose of this SPR assessment, the following mechanisms for AMD and salinity to enter plausible pathways and report to plausible receptors have been identified:

- Source spoil landforms:
 - Surface water run-off (pathway) from a nominated spoil landform reports to a nominated creek (receptor)
 - Seepage from a nominated spoil landform enters a shallow permeable strata (pathway) and reports to a nominated creek (receptor)

- Seepage from a nominated spoil landform enters groundwater (pathway) and reports to a nominated residual void (receptor)
- Source high-wall and floor
 - Run-off from high-wall of residual void (pathway) reports to nominated residual void (receptor)

The outcomes of the SPR are summarised below:

- Spoil landforms: With respect to AMD, the overall SPR risk rating from final spoil landforms is Low. With respect to non-oxidative salinity the overall SPR risk from final spoil landforms is also rated as Low.
- Residual voids: The final receptor for seepage from the spoil landform and run-off from the high-wall (of each void) is the void lake/residual void. The AMD assessment has found that it's unlikely that undiluted salinity or AMD from a flooded post-closure residual void floor would impact on residual void water quality to any significant degree, as other processes such as evapo-concentration are the key drivers of void lake water quality (SLR, 2024b). Therefore, the AMD SPR risk rating on the overall water quality of the residual voids is Low.

Water reporting to residual voids is expected to remain within the residual voids (excluding evaporative loss). Modelling undertaken by SLR (2024a) shows that seepage from the void lake (of each void) into groundwater, if any, would be limited.

6.1.3.5 Management and rehabilitation measures

The geochemical characterisation, SPR, and residual risk assessment conducted in support of this PRCP informed the following mineral waste management and rehabilitation measures with regards to AMD and salinity management:

- Residual voids: will remain as NUMAs.
- Spoil dumps: will be reshaped, covered with topsoil or alternative growth media and seeded. No specific
 AMD management measures are proposed for the spoil as operational mixing is expected to be sufficient
 to manage the small quantity of interburden/overburden that has been characterised with at potential for
 AMD. Monitoring in accordance with the PRCP schedule will be conducted to ensure that spoil landforms
 can achieve their nominated PMLU.
- Top of ramp ROM pads at Lotus-Campbell pit (comprising rejects): will be covered by spoil and become part of the Lotus-Campbell spoil landform.
- Main ROM pad: remove remnant coal and rejects from the ROM Pad and dispose within spoil. The former ROM pad will be reshaped, covered with topsoil, ripped and seeded.
- Coal stockpile: remove remnant coal from the coal stockpile pad and dispose within spoil. Cover with topsoil material, rip and seed.

6.1.3.6 Roper area

As specified in Section 6.1.3.1, the Roper area includes the OTD TSF, Ramp 67 tailings and Ramp 67/68 rejects dump. Only limited geochemical data is available for the tailings disposed within OTD TSF and rejects at Ramp 67 (grab samples near the surface where safe access was available). Safe access to the in-pit Ramp 67 tailings and other areas of Ramp 67/68 rejects has not been possible to allow drilling to collect representative samples down the stratigraphic profile. Therefore, no samples are available to assess bulk geochemical properties of the landforms to support informed source hazard assessment. Furthermore, as discussed below, limited understanding of the hydrogeology of the aquifers within the Roper area prevents the completion of a data driven SPR assessment.

To manage risk and achieve a stable condition, it is imperative that additional geochemical waste characterisation and modelling is undertaken to reduce the uncertainty in the geochemical assessment in the Roper area prior to the commencement of on the ground rehabilitation works. To properly assess the impacts of the in-pit tailings storage on groundwater quality and flows, an extensive geochemical monitoring program is required. This will inform the SPR assessment, as required by the PRCP Guideline, and ultimately enable final

closure landform design and rehabilitation outcomes that are sustainable and consistent to the risk to be managed.

The PRCP schedule rehabilitates this area as soon as practicable, once sufficient information is available to close the critical knowledge gaps and develop a closure plan that manages risks and achieves a stable condition at closure. Table 34 details the recommended activities and estimated timeline required to address the geochemical data gaps. The hydrogeochemical modelling requires outputs from the groundwater modelling (Section 6.1.1.6). The commencement of the first rehabilitation milestone and achievement of the rehabilitation milestone will be as soon as practicable once all work packages are complete. The activities will be refined as part of developing the detailed scope of works. Commencement of rehabilitation prior to the completion of the recommended activities and earlier than practicable, would be contrary to the purposes of the EP Act and would result in potential for worse environmental outcomes.

An amendment will be submitted if the improved geochemical understanding results in changes to the PRCP schedule.

Table 34: Recommended Roper area waste characterisation work package activities

Activity	Details	Estimated duration (months)
Drill program planning and earthworks to establish safe access	Assessment of geochemical knowledge gaps and development of a detailed scope of works, including identification of sampling and geochemical drilling locations. Scope of work to provide sufficient information to appropriately characterise waste to support detailed closure design.	24
	Earthworks to establish safe access to sampling locations and drill sites.	
	Commissioning and scheduling of drilling program.	
Geochemical drilling and sampling program	Sonic drilling at specified locations to collect tailings and rejects samples spatially and temporally representative of the depositional history of these facilities.	12
Testing	Geochemical static and kinetic (column leach) test work.	24*
Hydrogeochemical monitoring	Monitoring program to continue until inputs for the hydrogeochemical modelling are available.	54*
Hydrogeochemical modelling, closure options assessment	Utilises data from geochemical test work (kinetic) +/- in-situ monitoring to model long term water quality for porewater, pit lake water and seepage, if any, to assess surface/groundwater impacts, as required. This data can assist to identify closure options and refine closure cover designs.	12
	This step can only occur after the updated groundwater model and water balance for OTD TSF and Ramp 68/67 are available (Section 6.1.1.6 and Section 6.3.2.1). The groundwater model outputs, which provides predicted groundwater levels, flow directions and identifies potential groundwater receptors, is a critical input	

Activity	Details	Estimated duration (months)
	to the geochemical SPR assessment. The geochemical SPR assessment cannot be completed without the groundwater model outputs.	
	Where the modelling results indicate unacceptable closure outcomes, revision of the landform design and re-modelling will be required to assess alternative closure options. This step is repeated until a closure landform design that achieves acceptable post-mining outcomes is achieved.	
Detailed cover design (Section 6.1.6)	Data collected from geochemical testing +/- insitu monitoring (along with other inputs) to develop a data driven closure cover design.	18

^{*}Undertaken simultaneously.

Relationship with PRCP schedule

The geochemical risk of the spoil dumps and residual voids has been assessed as Low. The management and rehabilitation measures proposed in this PRCP manage the risk associated with mineral waste during rehabilitation and closure. Further data collection and technical studies are required to better understand the geochemical characterisation of materials in the Roper area, including tailings and rejects.

6.1.4 Soil and capping material

PRCP Guideline (Section 3.6.1)

The rehabilitation and management methodology should include that soil assessment activities are supplemented by additional surveys conducted at appropriate intervals to assess soil resources in planned disturbance areas. In addition to the assessment of soils, the proposed rehabilitation methodologies in the rehabilitation planning part must also address topsoil management. Topsoil management must ensure sufficient topsoil quantity and quality is available in those instances that waste rock or tailings cannot support the proposed PMLU. Integrated soil and waste rock characterisation and mapping should form the foundation of the rehabilitation strategies. The available soil resources and capping material should be assessed prior to the commencement of operations.

A growth media assessment has been undertaken to support the development of this PRCP. The detailed report – *Saraji South Mine Material Characterisation Study* (Landloch, 2023b), is provided in Appendix F. Soil surveys have been conducted for the proposed mining footprint (Section 1.2.6).

6.1.4.1 Quality of available resources

The quality of the stockpiled topsoil is more representative of the material available for rehabilitation once topsoil is stripped and mixed in stockpiles, compared to undisturbed in situ soil (Landloch, 2023b). The key chemical and physical properties of the stockpiled topsoil within the soil management groups available for rehabilitation at SSM is summarised in Table 35. The characterisation of these materials show that amelioration will be required for them to be suitable to support a PMLU (Section 6.1.4.3).

Permian spoil has been used as a growth media in rehabilitation at SSM and other BMA sites. It has been found that with amelioration, this material can provide a suitable substrate for native woodland species, and it will continue to be used as a growth media, where suitable. Fresh Permian spoil is also considered a resource for rehabilitation to provide the rock component to increase batter slope resistance to erosion and to stabilise steeper areas. The key chemical and physical properties of the fresh Permian spoil are summarised in Table

35, however Landloch (2023) recommend discrete testing should be conducted prior to rehabilitation, which will be completed by an AQP as part of their growth media assessment (Section 6.1.4.3).

Table 35: Key physiochemical properties of stockpiled soil management groups and spoil material

Rehabilitation resource	Properties
Clay topsoil	Slightly to strongly alkaline (pH 7.9 – 8.8)
	Low to moderate salinity (EC 0.11 – 0.39dS/m)
	Non-sodic to sodic (ESP 1.4 – 10.6%)
	Low to very low available nutrients (N,P,K)
	Clay content >35%
	Low permeability, indicating that movement of water to depth will be limited without management
	Dispersive to slaking (2 – 5 Emerson Aggregate Test)
Sand/loam topsoil	Generally neutral (pH 6.6 – 7.4)
	Very low salinity (EC <0.05dS/m)
	Non-sodic to sodic (ESP 3.9 – 10.2%).
	Low to very low available nutrients (N,P,K)
	Low CEC and ability to retain nutrients (<4meq/100g).
	Clay content of less than 25%
	Moderate permeability, indicating that movement of water to depth will be reasonably rapid
	Slightly dispersive (3b Emerson Aggregate Test)
Permian spoil (including rock)	Neutral to strongly alkaline (pH 6.5 – 9.6)
	Moderate to extreme (EC <0.3 – 2.5dS/m)
	Low to very low available nutrients (N,P,K)
	Sodic to strongly sodic (ESP 10 - 40%)
	Low to adequate nutrient holding capacity (EC)
	Moderate permeability, indicating that movement of water to depth will be reasonably rapid
	Rock content up to 74%

6.1.4.2 Quantity of available resources

The rehabilitation at SSM requires growth media to support vegetation establishment for the planned PMLUs. There is sufficient quantity of suitable growth media available on-site for rehabilitation of disturbed areas to cattle grazing, grassland, woodland habitat and watercourse PMLUs. The volume of topsoil available for rehabilitation includes the volume of topsoil currently stockpiled at site (4,509,586m³, as at May 2023) and the future topsoil to be stripped (estimated at 3,511,718m³ for the future mining areas), totalling 8,021,305m³. There is also suitable Permian spoil which can ameliorated to develop an alternative growth media. An alternative growth media will be used for the low-wall PMLU areas and may be used on other woodland habitat areas where it is assessed by an AQP to be suitable to achieve the PMLU.

The volume of growth media required for rehabilitation of each PMLU is shown in Table 36. These volumes include existing and future disturbance areas for the whole site, only where growth media needs to be replaced. Required volumes do not include disturbed areas such as exploration, cleared and existing rehabilitation which already have topsoil. The areas in Table 36 therefore do not align to the total area of the RAs. The volume shown for watercourse is conservative as it assumes all diversion and crossing areas require topsoil. Excess topsoil volume will be utilised in areas where there will be a beneficial outcome, such as cattle grazing areas.

Table 36: SSM required growth media volumes for PMLUs

PMLU	Growth media	Area (ha)*	Cover depth (m)	Volume Required (m³)
Cattle Grazing	Topsoil	934	0.15	1,401,000
Grassland	Topsoil	157	0.15	235,500
Woodland Habitat	Topsoil	4,141	0.10	4,141,000
	Alternative growth media	1,106	0.30	3,318,000
Watercourse	Topsoil	261	0.15	391,500
Total	Topsoil	5,493		6,169,000
	Alternative growth media	1,106		3,318,000

^{*}Does not include disturbed areas where topsoil is still in place

Rock will be utilised on the steeper final landform slopes to improve the erosion resistance (Section 6.1.5.3). Rock will be sourced from the mined fresh Permian overburden and interburden, with sufficient quantity available on-site for the planned rehabilitation. Rock will be used directly on rehabilitation areas or stockpiled when required to ensure sufficient quantity for the planned rehabilitation.

6.1.4.3 Resource management

During mining operations, topsoil is stripped according to the recommended depths from the pre-mining soil surveys. The topsoil is either used direct on rehabilitation areas or stockpiled progressively for later use in rehabilitation. Topsoil is stripped with caution to ensure as little contamination with subsoils occurs as possible. The location of current topsoil stockpiles are shown in Appendix F. Stockpile locations and volumes will vary throughout the life of the operation as stockpiled topsoil is used on rehabilitation and new stockpiles are created as mining advances. The spatial location of stockpiles is recorded in a geographic information system and a volume inventory is maintained.

An assessment of the growth media (topsoil or Permian spoil) characteristics will be completed by an AQP (as per condition A5 of the EA) prior to rehabilitation, to determine the amelioration requirements and surface treatments. The assessment will consider the growth media qualities, rock, landform and revegetation plan for the proposed PMLU (Section 6.1.8).

For cattle grazing PMLU, the AQP will detail the amelioration and physical treatment requirements for the topsoil to be within the relevant land suitability class 3 or better parameters as per the *Rehabilitated mined land suitability for beef cattle grazing in the Bowen Basin: Technical Paper 1* (Short, 2025)(Table 25).

The growth media depth, potential amelioration options and the surface treatments to support the establishment of vegetation for each PMLU, are shown in Table 37. Opportunities to utilise other amelioration and surface treatment methods may be investigated. After application of the required ameliorants, areas will be ripped along the contour to key in the growth media with the underlying spoil, reduce compaction, improve water infiltration and create surface roughness to slow surface runoff. The relationship between soils and vegetation ecosystems for the PMLUs is detailed in Section 6.1.8.

Table 37: Growth media ameliorant options and surface treatments for the SSM PMLUs

PMLU	Growth media	Ameliorant options	Surface treatments
Cattle crazing and grassland	Topsoil – minimum depth of 150mm is sufficient to store moisture and nutrients to initiate and sustain growth of grasses	 Elemental Sulphur Manures Urea Diammonium phosphate Superphosphate Fertiliser Gypsum Incorporated organic matter Surface mulching (e.g. hay mulch) 	 Ameliorate growth media as recommended by an AQP (if required) Rip along contour Direct seed as per seed mixes and rates for cattle grazing or grassland revegetation (Section 6.1.8.5)
Woodland habitat	Topsoil – minimum depth of 100mm to support establishment of woodland species and to limit the effects of competition from exotic pasture species Or Permian spoil – minimum depth of 300mm	 Elemental Sulphur Manures Superphosphate Fertiliser Gypsum Incorporated organic matter Surface mulching (e.g. hay mulch) 	 Ameliorate growth media as recommended by an AQP (if required) Deep rip along contour to incorporate rock Direct seed as per seed mixes and rates for woodland habitat revegetation (Section 6.1.8.7)
Watercourse	Topsoil - minimum depth of 150mm to encourage a vegetative cover to provide erosion resistance	 Elemental Sulphur Manures Superphosphate Gypsum Incorporated organic matter Surface mulching (i.e. hay mulch) 	 Ameliorate growth media as recommended by an AQP (if required) Rip along contour as required Direct seed as per seed mixes and rates for watercourse revegetation (Section 6.1.8.9)

Relationship with PRCP schedule

There is a sufficient quantity of suitable growth media available on-site to use for rehabilitation of disturbed areas to cattle grazing, grassland, woodland habitat and watercourse PMLUs. Suitable Permian spoil will be ameliorated to develop an alternative growth media for the low-wall PMLU areas and potentially other woodland habitat PMLU areas.

An assessment of the growth media characteristics will be completed by an AQP prior to rehabilitation, to determine the amelioration and surface treatments required to achieve the planned PMLU.

6.1.5 Landform design

PRCP Guideline (Section 3.6.1)

The final landform design must be based on the proposed PMLUs and NUMAs and demonstrate that the land will be safe and structurally stable.

A landform design assessment has been undertaken to support the development of this PRCP. The detailed report — *Erosion and Landform Evolution Simulations to Support Waste Landform Design: Saraji South Mine* (Landloch, 2024), is provided in Appendix K.

Landform design considers the landform development and reshape after the removal of infrastructure, and prior to placement of growth media and seed.

The final closure landform design has been refined based on the outcomes of the studies undertaken to support this PRCP. The major refinements included changes to the mining limits to ensure geotechnical stability of the residual voids is achieved (Section 6.3.1), residual void extents to mitigate the risk of flooding (Section 6.1.2) and spoil dump slope angles for erosional stability based on the materials available on site (Section 6.1.5.3).

6.1.5.1 3D design

The conceptual 3D closure landform design for SSM is provided in Figure 18.

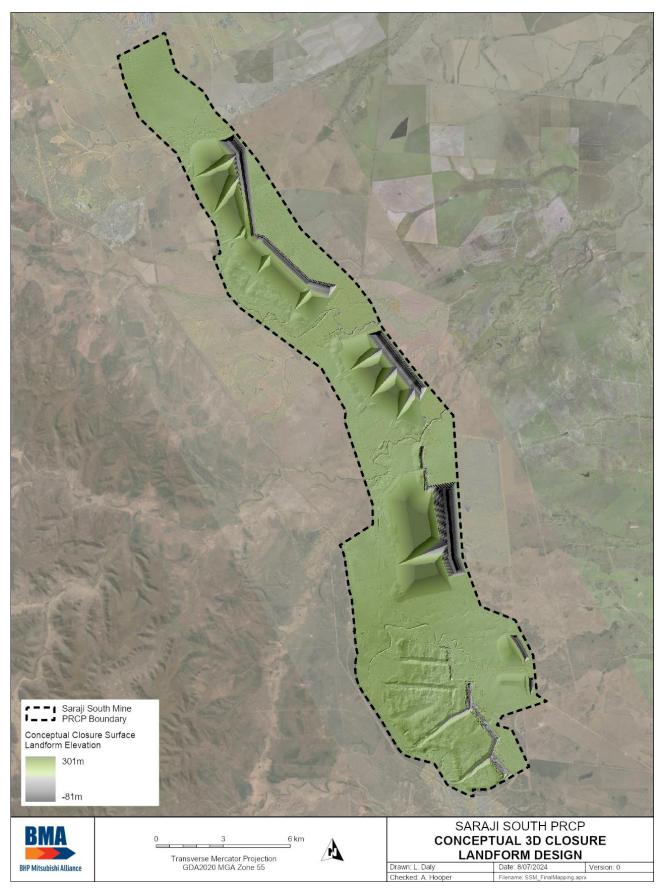


Figure 18: Conceptual 3D closure landform design

6.1.5.2 Method of determining landform design

The relevant activities (Section 1.4.1) considered when determining the landform design are detailed in Table 38.

Removal of infrastructure (Section 6.5) and contaminated land requirements (Section 6.5.3) will be completed where required, prior to reshaping of the final landform. After reshaping of the final landform, the required growth media and ameliorants are applied to support the PMLU (Section 6.1.4), the area is seeded (Section 6.1.8), and monitoring and maintenance completed to ensure rehabilitation is tracking to a stable condition (Section 8).

Table 38: Landform structures at SSM and proposed designs

Landform structure	Landform design
Spoil dumps	Maximum dump heights varying from 50m up to 120m above ground level to fit the waste scheduled to be mined
	20m dump lift heights
	Dump slopes within PMLU areas to be reshaped with maximum 15% slopes with topsoil or alternative growth media, or up to maximum 30% slopes with rock on the final landform surface with alternative growth media (refer to erosion modelling Section 6.1.5.3)
	Runoff to be restricted from the top of the landform onto the batter slopes if required to manage erosion
	Spoil dumps achieve FoS ≥1.5
TSFs and rejects	Covered by a non-ponding landform (Section 6.1.6)
	Minimum 2m spoil cover (Section 6.1.6)
	Area will be reshaped with maximum 30% slopes with rock on slopes >15%
	Landform achieves FoS ≥1.5
Infrastructure and general areas – MIA, buildings, stockpile areas,	Area will be reshaped with maximum 12% slopes for cattle grazing PMLU
laydown areas, roads, mine dams, drains, exploration	Area will be reshaped with maximum 15% slopes for woodland habitat PMLU
Residual voids	 Set-back from the high-wall and end-wall crest to achieve structural stability of FoS ≥1.5 within the NUMA extents or a minimum of 50m where against the tenure boundary (Section 6.3.1)
	Set-back from the low-wall crest to achieve structural stability of FoS ≥1.5 within the NUMA extents or a minimum of 25m for erosion protection of PMLU (Section 6.3.1)
	The location of the voids and associated safety bunds does not cause instability or degradation to the land outside of the tenure boundary
	Low-walls are free draining into the void lake with a maximum of 37 degree slopes
	Flood mitigation to a level 1m above the 0.1% AEP (including climate change consideration of 20% increase in rainfall

Landform structure		Landform design
		intensity) flood levels where required to prevent flood ingress (Section 6.1.2):
		 Lotus/Campbell Pit: partial void backfill on the northern and southern end-walls
		 Gilbert Pit: partial void backfill on the northern and southern end-walls
		 Price/Leichhardt Pit: partial backfill on the northern end- wall
		- East Pit: partial backfill on the end-walls adjacent to Rolf Creek
High-wall landform	•	The functional requirements include:
		- Prevention of surface flow of floodwater into the void
		 Geotechnically stable when floodwater is against the creek-side batter
		- Prevention of seepage flow of floodwater into the void
		 No greater maintenance post-closure than other land with similar use, therefore utilise the same geometry, materials and rehabilitation treatments
	•	The standard design for preliminary planning includes:
		 Key trench through any permeable layer on the ground surface
		- Not to be constructed out of dispersive material
		- Maximum 30% slopes with rock for scour protection
		 Minimum height to include appropriate freeboard for flood heights and materials
		- Minimum crest width of 10m
	•	The final design will be completed by an AQP based on the latest flood modelling (flood duration against the landform, maximum water levels, flow velocity and bed shear stress), and materials data prior to construction

Materials available for landform rehabilitation

The landform at SSM utilises materials available on-site that will achieve the required landform stability. Rock will be utilised on the steeper final landform slopes to improve the erosion resistance (Section 6.1.5.3). Rock will be sourced from the mined overburden and interburden, with sufficient quantity available on-site for the planned rehabilitation. Rock will be used directly on rehabilitation areas or stockpiled when required to ensure sufficient quantity for the planned rehabilitation.

Growth media details to support revegetation are included in Section 6.1.4.

Hydrological and hydrogeological assessments

Except for the catchment into the residual void, the final closure landform will predominately be free draining. Rehabilitation will include:

- Reshaping of the rehabilitated spoil dumps with no permanent water management on slopes
- · Reshaping of the rehabilitated mine water dams to be free-draining

• Removal of any road culverts and fill material from within the watercourse extents

Free draining is considered to be where the landform sheds the majority of the surface flows from the landform and towards the local drainage lines, and where any residual collection of water on the landform does not persist for more than one month under typical dry weather conditions.

A rehabilitation flood assessment, including hydrologic and hydraulic modelling has been completed for the closure landform (Section 6.1.2). The flooding risk profile developed as part of this assessment identified the risks to the closure landform from flooding to be low with mitigation measures in place. Mitigation includes partial final void backfill and landforms to mitigate the risk of flood waters entering the residual voids up to the 0.1% AEP (including climate change consideration of 20% increase in rainfall intensity) flood level as detailed in Table 38. Landforms are permanent structures that will be constructed with the same materials, procedures and geometry as other spoil landforms and require no more maintenance than other rehabilitated areas. These landforms will be designed by an AQP based on the latest flood modelling and materials data prior to construction.

The flood water interaction with the spoil dumps is at the extremity of the flooding extent with relatively low velocities and flood heights (Section 6.1.2). Outer landform slopes that interact with flood waters up to a 0.1% AEP will incorporate controls, if required, to minimise potential instability of the landform from interaction with floodwaters.

A hydrogeological assessment (Section 6.1.1), including numerical modelling, and pit lake water balance modelling (Section 6.3.2.1) identified that the Lotus/Campbell, Gilbert, Price/Leichardt and East Pit residual voids will act as groundwater sinks once the pit lakes and groundwater have stabilised. Therefore, groundwater in the proximity of these residual voids will remain depressed and will not impact on the landforms outside of the residual voids.

The Roper residual voids will be subject to further technical studies and modelling (Section 1.4.1.2). The landform within the Roper area may need modifications to appropriately manage catchments (Section 6.1.1.6).

6.1.5.3 Long-term landform stability

Material testing, erosion modelling and landform evolution modelling of the rehabilitated spoil dumps has been completed (Landloch, 2024) to establish the slope profiles for the materials at SSM to ensure long-term landform stability (Appendix K).

The landform study included:

- Simulations of runoff and erosion for a range of spoil dump landform options using the Water Erosion Prediction Program (WEPP)
- Derivation of parameters for the SIBERIA landform evolution model
- Landform evolution simulations using SIBERIA for the 3D landform of the SSM rehabilitated spoil dumps, which were designed based on the WEPP results

The runoff and erosion simulations using the WEPP model and the landform evolution simulations using the SIBERIA model indicate that the proposed spoil dumps and slope profiles (Table 38) at SSM can be expected to be stable over the long-term, provided the target levels of groundcover are achieved. Total groundcover manages erosion risk, which includes a combination of rock, vegetation and organic litter cover. In the WEPP and SIBERIA models, the rock cover component is incorporated into the material parameters and a range of vegetation cover is modelled. Vegetation cover includes plants, plant litter, tree leaf litter, twigs and woody debris that protect the soil surface from erosion.

The modelling in Appendix K gives an indication of the vegetation cover to meet target erosion rates for the representative materials modelled, but it does not determine the exact vegetation cover required. The results in Appendix K demonstrate that rockier materials require lower vegetation cover to achieve the target erosion rates on the same slopes. Exact vegetation cover varies with the rock component, therefore the milestone criteria refers to total groundcover, as this manages the erosion risk.

The Roper spoil dumps have not been modelled in Appendix K. The existing landform aligns to the same stable slope profiles as modelled for the rest of the site. Any landform changes required as part of the detailed rehabilitation and management plan for Roper area will align to the modelled stable slope profiles, or if required, additional modelling will be undertaken.

To establish vegetation cover as soon as possible and limit the window of erosion risk, the following measures are planned:

- Ripping along the contour to key the growth media with the underlying spoil, reduce compaction, improve water infiltration and create surface roughness to slow water flow (Section 6.1.4.3)
- Application of seed at the optimal time where there is sufficient soil moisture in the profile to assist germination and sustain establishment (Sections 6.1.8.5, 6.1.8.7 and 6.1.8.9)
- Inclusion of a sterile cover crop in the seed mix, which establishes quickly on the exposed surfaces and works to provide a root system that will stabilise the surface (Sections 6.1.8.5, 6.1.8.7 and 6.1.8.9)
- Surface mulching where appropriate, to provide instant groundcover (e.g. hay mulch) (Section 6.1.4.3)
- Monitoring as scheduled and maintenance as required (Section 8)

6.1.5.4 Method of construction

The majority of the spoil dumps are dumped within the mined-out pits and comprise of dragline spoil piles at the base of the dump (~80m high) with haul trucks dumping ~20m lifts above the dragline spoil, or solely haul truck dumping in ~20m lifts where only truck and shovel mining is undertaken.

6.1.5.5 Quality assurance/quality control

The proposed actions referenced in Table 38 are the key controls that will be put in place to manage the landform risks associated with achieving the PMLUs. Designs will be completed for each rehabilitation area prior to execution of the rehabilitation activities and earthworks, and included as part of the rehabilitation workpack, or current work process, at the time of execution.

Quality assurance and quality control (QA/QC) activities are built into all necessary execution and verification activities of these controls. Monitoring and reporting processes verify controls and ensure that controls are executed effectively (Section 8).

6.1.5.6 Trial methodology

Modelling has indicated the proposed landforms will be stable and monitoring will verify if the landforms are on a trajectory towards achievement of the milestone criteria and eventual certification, or whether corrective actions, maintenance or changes to the rehabilitation methodology is required. No trials are planned for SSM for landform design.

6.1.5.7 Limitations and assumptions

The limitations and assumptions of the final closure landform design include:

- Technical studies may require revision of the closure landform design within the Roper area to manage risks and achieve a stable condition e.g. to manage catchments and potential rehandle of spoil dump material for TSF and rejects cover. Iterations of the landform design and subsequent re-modelling may be required to assess alternative closure options. An amendment will be submitted if the revised closure landform design requires changes to the PRCP schedule.
- The final closure landform is dependent on the mining schedule, which can change due to increased
 geological knowledge as mining progresses, market factors and technology. These changes may result in
 differences to the landform, such as varying heights or ramp locations, but the key considerations to ensure
 long-term stability, such as slope profiles and materials, will be maintained in the final closure landform
 design.
- The landform has been designed with maximum dump heights to ensure all modelling is conservative. It is not expected that all areas of the spoil dumps will reach these heights.
- A swell factor of 25% has been assumed for the dump scheduling. This is a standard factor based on experience in the Bowen Basin.

- Angle of repose of the spoil material is 37°.
- Landform evolution modelling has been completed up to 300 years based on the best available inputs at
 this time and the material testing completed at SSM to date. It is expected materials with higher levels of
 rock will become available as mining progresses, requiring lower levels of vegetation cover to limit erosion
 to target levels.
- Due to the size of the spoil dumps and dumping in lifts, the majority of settlement of the 'constructed' landforms is expected to occur during placement with only minor settlement expected after rehabilitation. According to Australian Coal Research Association Research Program (ACARP) project C19022 (Williams, 2015), spoil settlement consists of three components: self-weight settlement (80% occurs during placement and decreases exponentially with time); collapse settlement (most occurs during placement); and degradation settlement (variable timeframe depending on material, but most may occur during placement and approaches a limit over time). The landform will be monitored to ensure a free-draining landform is maintained where required.

Relationship with PRCP schedule

The final closure landform design has been refined based on the outcomes of the studies undertaken to support this PRCP and minimise risk. Dump slopes have been designed based on the materials available on-site and the erosion modelling. The closure landform design, including the spoil dumps, residual voids and other disturbed areas, achieves a safe and stable landform. The milestone criteria to achieve a stable condition is for total groundcover as this manages the erosion risk.

6.1.6 Cover design

PRCP Guideline (Section 3.6.1)

A cover design is required for the surface treatment of a mine landform or other waste material. Hence, the cover system design must be appropriate for the type(s) of waste the project will generate and reflect a risk-based approach. Where waste has the potential for AMD, neutral mine drainage or saline mine drainage, an appropriate cover system must be designed.

The cover design should include:

- identification and specification of the objectives of the cover system
- a detailed description of the design including the thickness of each layer
- a detailed description of construction methodology including any proposed staging of the cover system
- a quantitative assessment that identifies the location and quantity of proposed capping material available on-site
- proposed QA/QC for the construction of the cover system including the timely implementation of corrective actions where deviations from the design are identified.

As detailed in the PRCP Guideline, a cover system is required where there is potential for materials to cause AMD, NMD or SD, to ensure contaminants are not released to the receiving environment. As detailed in Section 6.1.3, the likely materials with potential for AMD, NMD or SD at SSM include tailings and rejects. The covers are required to produce a stable landform that minimises the potential for complete exposure pathways to contaminants, leachate generation and release of contaminants to the receiving environment. To achieve these objectives, covers need to be engineered to meet material/site/facility specific requirements.

The SSM TSFs and rejects dump are located within the Roper area detailed in Section 1.4.1.2. There is insufficient geochemical (Section 6.1.3) and tailings geotechnical characterisation data (Section 6.2) to adequately finalise the assessment of potential closure risks associated with the tailings and rejects. There is also a high level of uncertainty within the numerical groundwater model in the proximity of the Roper voids, which limits the confidence in the assessment of SPR linkages (Section 6.1.1.6).

Cover designs need to be integrated into the overall closure design, particularly in areas such as the Roper area, where residual voids, void lakes and groundwater all interconnect with the deposited tailings and rejects material. Covers in the Roper area have the potential to influence surface water volumes and locations, void lake heights, groundwater heights/flow directions and PMLU selection. It is therefore imperative that cover designs within the Roper area are based on a good understanding of the surrounding environment, including

the tailings and rejects compositions, to minimise the potential for covers to result in environmental harm and landforms that do not achieve a stable condition.

The risk assessment (Section 7.1.3) identifies additional investigation works required to address the knowledge base gaps, before finalisation of the detailed cover design:

- Geochemical risks associated with the tailings and rejects material (Section 6.1.3.6)
- Geotechnical risks associated with the tailings and rejects material (Section 6.2.3)
- Groundwater depth, flow paths, directions and receptors in the proximity of the waste disposal locations (Section 6.1.1.6)

Cover designs will be developed as part of the technical studies and detailed closure plan for the Roper area.

For this transitional PRCP, the conceptual cover design for tailings and rejects (RA16) is a non-ponding landform with at least 2m of spoil cover. This cover is based on the source hazard assessment for the limited tailings and rejects samples available to date being comparable to that of the neighbouring SRM site. The cover will be non-ponding, with surface water runoff from the rehabilitated surfaces suitable to be released to surrounding drains and watercourses.

To maximise the stability and integrity of the cover, the area will be rehabilitated to a PMLU of grassland, which will provide shallow rooted vegetation and no disturbance of the landform by livestock.

An amendment will be submitted if addressing the knowledge base gaps listed above results in changes to the cover design and the PRCP schedule.

As detailed in Section 6.1.3, no specific management measures are required for the spoil dumps.

Relationship with PRCP schedule

Detailed cover designs for the TSFs and rejects dump will be developed as part of the technical studies and detailed rehabilitation and management plan for the Roper area.

6.1.7 Water management

PRCP Guideline (Section 3.6.1)

The rehabilitation planning part must include a description of the following:

- a description of the contaminants that pose a risk to environmental values of the receiving environment
- source, pathway and fate of contaminants that have the potential to impact environmental values
- infiltration and seepage intervention and collection controls
- surface water diversions and long-term management requirements
- dewatering requirements
- ongoing water management and reduction requirements (i.e. treatment).

The closure landform design for SSM is intended to provide landforms that are suitable for and meet the nominated PMLU and NUMA milestone criteria without the need for ongoing active water management or dewatering.

The key objectives for post-mining water management, which are discussed in more detail in the relevant sections of this PRCP, have been taken into account during the development of the closure landform and include:

- With the exception of the catchment of the residual voids, the rehabilitated closure landform surfaces will be predominantly free-draining to surrounding watercourses (Section 6.1.5)
- All mining-related dams will be decommissioned and removed, and the rehabilitated areas will be predominantly free-draining (Sections 6.1.5 and 6.5)

- Final residual voids will remain as NUMAs and will establish into a network of groundwater sinks that provide
 passive management of groundwater seepage from mining disturbed areas and minimises the potential for
 migration of contaminated groundwaters off-tenure and the future interconnection of groundwater aquifers
 (Section 6.3)
- Rehabilitated closure landforms provide residual void flood protection up to and including a 0.1% AEP flood event including a climate change increase of rainfall intensity of 20% (Section 6.1.2 and 6.1.5)
- The acid neutralising capacity of the spoils is sufficient to neutralise any acid forming materials within the spoil dumps (Section 6.1.3)
- Modelling of flow paths through particle tracking simulations over a 578-year recovery period, indicate the groundwater within the tenure will migrate toward the residual voids (NUMAs) and not into receiving environments (Section 6.1.1)
- Contaminated land investigations (RM2) will be undertaken to confirm the suitability of the site for the PMLUs and provide additional information on source areas, preferential pathways and potential risks associated with migration of any residual contaminants.
- Forward work plans and any required realignment and rehabilitation works will be undertaken to render the creek/surface water diversions at SSM to a suitable condition, supporting their progression to a relinquishable state (Section 6.1.7.5)
- Conceptual site models that assess SPR linkages have been prepared for relevant technical studies including hydrogeology (Section 6.1.1), waste characterisation (Section 6.1.3) and voids (Section 6.3) and show a low likelihood of complete exposure pathways to off-tenure receptors

The retention of the northern three residual voids within the post-mining closure landform provides passive ongoing management of groundwater through the collection of seepage from spoil dumps and other operational areas within a residual void NUMA. Predictive water balance modelling, numerical groundwater modelling and particle tracking have been undertaken and demonstrate, that based on the closure landform design presented within the PRCP and the currently held data, these planned residual voids provide for on-going appropriate management of seepage. No additional intervention or seepage controls are required to provide groundwater management.

Within the Roper area, there is currently limited available groundwater data, which has resulted in increased uncertainty within the numerical groundwater model and a lower level of alignment between the groundwater model and the void lake water balance model. The uncertainty surrounding water model outputs requires knowledge base gaps to be closed before finalisation of a detailed, risk driven, water management plan for the Roper area. The complexity of the area that supports residual voids, TSFs, rejects, mine affected water dams, watercourse diversion, spoil dumps, and neighbours the MIA/former CHPP, requires a competent understanding of each aspect and how they interact to allow establishment of a stable post-mining environment that adequately manages water. The Roper area (Section 1.4.1.2) will undertake further technical studies to enable the finalisation of the water management plan as part of the detailed closure plan for the area.

6.1.7.1 Contaminants and sources

Since SSM operations commenced in 1979, heavy industrial type activities including operation and maintenance of the processing facilities, vehicles and other plant infrastructure required to support the extraction and processing of coal, have occurred on the site. These heavy industrial type activities include the storage, use and disposal of a variety of hazardous materials. The assessment of the industrial and associated areas, when they are available for rehabilitation, is required to identify and direct any required contaminated land remediation and/or management works.

The predominant hazardous materials identified to have a potential to cause contamination at SSM and impact PMLUs and/or the receiving environment include:

- · Hydrocarbons: including diesel, oils, greases, methyl isobutyl carbinol and other solvents
- Aqueous Film-Forming Foam: historical use of products containing Perfluoroalkyl and Polyfluoroalkyl Substances species of concern
- Nitrogen: associated with explosive production

- Carbonaceous materials
- Metals: associated with leachate from spoil, rejects, tailings, coal and industrial operations (aluminium (Al), arsenic (As), barium (Ba), cobalt (Co), iron (Fe), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn) identified within the Environmental Geochemical Characterisation report (Appendix J))
- Sulphate/salinity

Investigations undertaken as part of RM2 will provide for the assessment, characterisation, remediation and/or management of these contaminants, if present in the landform. Therefore, these contaminants are not envisaged to require any on-going water management post-mining.

Current operational water management includes the segregation of mine affected water from mine operational areas, from non-mine affected areas. Water from mine operational areas is collected within on-site mine dams and residual voids for recycling within BMA's operations or released under the conditions of the EA. Mine affected water includes pit water, TSF water and runoff from areas such as the MIA. Mine affected water dams have the potential to accumulate contaminants and therefore are a potential secondary source of contamination. Contaminants of concern within the dams include those potential contaminants listed above, as well as salinity. All mine affected water dams will be assessed for potential accumulation of contaminants and appropriately decommissioned to form free-draining areas.

As detailed within the SSM Environmental Geochemical Characterisation and Risk Assessment of Mineral Waste (BHP, 2024) (Appendix J), the AMD and non-oxidative salinity overall SPR risk ranking within the closure landform for the spoil dumps and residual voids is classified as 'Low' (Section 6.1.3.4). The spoil at SSM has been identified to contain moderate to high acid neutralising capacity, which can assist with the in-situ neutralisation of AMD sources. In addition, the depth to groundwater and the results of hydrogeological particle tracking indicates that potential contaminated seepage that enters the groundwater does not leave the tenure within the modelled 578 year simulation period, and predominantly is collected within the NUMAs (Section 6.1.1). Surface water and groundwater monitoring – as per the operational EA requirements, and Sections 8.5 and 8.6 of this PRCP will identify any potential geochemical risks from site and progressively rehabilitated landforms.

Water quality within the residual void lakes, will be influenced by the effects of evapo-concentration. Water quality modelling (Appendix M) indicates the salinity within the residual void lakes will continue to increase over time. Therefore, the residual void lakes represent a potential contaminant source in the post-mining environment.

Contaminated land investigations will be undertaken to assess areas for potential contamination (RM2). These investigations will assess for potential contaminants that are utilised or generated during operations and will provide an assessment of the risk presented to achievement of the PMLUs and the receiving environment.

6.1.7.2 Pathway of contaminants

The final landform surfaces will generally be free draining directly to the surrounding watercourses. Any contaminants present at the surface of the closure landform have the potential to be mobilised through surface water runoff, generation of airborne particulate and through direct contact with the PMLUs. Contaminated land assessments (RM2) at required areas when they become available for rehabilitation, will inform required remediation/management works to mitigate identified unacceptable risks associated with potential pathways through surface contamination.

Prior to rehabilitation, the mine affected water dams, and other associated infrastructure within the mine water management system, will be assessed for potential contaminants, remediated where required and decommissioned. The surface of mine dam rehabilitation areas will be free-draining and will not present an unacceptable risk of contaminant mobilisation.

Modelling of flow paths, through groundwater particle tracking, indicates that groundwater within the tenure, including those areas containing the MIA, mine dams and spoil dumps, will remain on the tenure and predominantly migrate towards the residual voids post-mining. During the initial stabilisation phase of the groundwater and pit lakes, the more dynamic climate influenced pit lakes (when compared to groundwater) may result in some variability in the flux between groundwaters and pit lakes. Outflows (mainly within the first 39 years post-mining) are predominantly into the spoil dumps, prior to the recovery of groundwater within the spoil. Flow path modelling indicates that these outflow events do not result in the loss of groundwaters beyond the

tenure with water returning to the residual voids (Sections 6.1.1 and 6.3) upon recovery of the groundwater. Also, water quality modelling (Appendix M) indicates that these outflows occur prior to evapo-concentration driven salinity increases of the void lakes to above that observed within the Permian hosted aquifers. Once the void lakes and groundwater levels have stabilised, the northern three residual voids and the East Pit residual voids are modelled to be groundwater sinks, which maintain inward groundwater hydraulic gradients, creating flow paths for seepage towards these voids and effectively containing potentially contaminated seepage and the void lakes within the tenure.

Due to the identified uncertainty within the groundwater model and void lake water balance model in the Roper area, further technical studies are required to confirm potential contaminant pathways. The Roper area's hydrogeological and geochemical knowledge base gaps need to be closed to provide confidence in the numerical model outputs and confirm the closure landform will achieve a stable condition.

6.1.7.3 Fate of contaminants

Any contamination remaining post-mining will not present an unacceptable risk to the proposed PMLU or adversely impact environmental values. Contamination that presents an unacceptable risk to the nominated PMLUs, or the receiving environment will be subject to remediation and/or management through implementation of engineering controls, such as covers, that minimise the potential for migration of contaminants and creation of complete exposure pathways.

The monitoring program detailed in Sections 8.5 and 8.6 provides for 18 groundwater monitoring locations and eight in watercourse monitoring locations. These monitoring locations target key areas within the closure landform that will assist with confirming the attainment of acceptable closure outcomes for the site. Data from the groundwater bores will be used within five yearly updates of the numerical groundwater model (commencing from 2050) to confirm that seepage pathways/inward groundwater hydraulic gradients to the residual voids are developing and the quality of the groundwater resource does not present an unacceptable risk of causing environmental harm. The NUMA residual voids, which modelling results indicate will develop into a network of long-term groundwater sinks within the post-mining environment, will provide terminal containment of seepage waters and residual void lakes.

6.1.7.4 Water storages

All mine water storages, that are not beneficial to the PMLU and do not have a landowner agreement to retain, will be decommissioned and rehabilitated. No residual mine water storages are currently contained in the closure landform. All dams used to store mine affected water will be subject to investigation for potential contamination, and where required, remediation/management as part of the decommissioning. The final closure landform will be predominantly free draining and stable.

6.1.7.5 Surface water diversions and management requirements

SSM has four current watercourse diversions – Downs Creek, Lotus Creek, Stephens Creek and Rolf Creek, which were designed and constructed to enable open-cut mining, plus an equalisation channel between Scott and Sandy creeks to mitigate flood risk of the main haul road. Each creek diversion was assessed against the goals of being safe, structurally stable, not causing environmental harm and able to sustain a watercourse PMLU. The assessments concluded that three of the SSM diversions, Downs Creek, Lotus Creek and Stephens Creek, in their current alignment, are expected to progress towards the final milestone criteria of achievement of PMLU to stable condition. The equalisation channel is planned to be backfilled to natural ground level.

Rolf Creek (including the upstream unmapped extent) was assessed as requiring realignment and rehabilitation. Therefore a diversion concept design, based on both the Department of Natural Resources, Mines and Energy (DNRME) - Guideline: Works that interfere with water in a watercourse for a resource activity—watercourse diversions authorised under the Water Act 2000 (DNRME, 2019) and ACARP Criteria for functioning river landscape units in mining and post mining landscapes (ACARP, 2014), has been developed: PRCP Concept Design Report – Rolf Creek East (Engeny, 2024), provided in Appendix L. The Rolf Creek diversion concept design is within the acceptable design values listed in the DNRME (2019) guidance note for Outcome 3, which nominates values for stream power, shear stress, and velocity parameters as acceptable hydraulic outcomes for diversion designs. This diversion concept design will be progressed to a functional design and a water licence will be granted prior to construction.

The diversion details and forward work plan commitments for relinquishment of these watercourses are summarised in Table 39. Prior to commencing any watercourse diversion rehabilitation construction works, all applicable environmental approvals, including under the *Water Act 2000*, will be obtained.

A surface water diversion to divert an unnamed/unmapped tributary east of East Pit was approved as part of the East Pit EIS (BMA, 2006), and this conceptual surface water diversion has been incorporated into the PRCP final landform.

6.1.7.6 Ongoing water management

On completion of rehabilitation works, ongoing water management/dewatering is not envisaged to be required due to the following:

- The surface of the closure landform, other than the catchment into the residual voids, will generally be freedraining and surface flows will not contain concentrations of contaminants that have the potential to cause environmental harm
- Contamination will be remediated and/or appropriately managed as part of RM2
- The residual void network will contain groundwater seepage from the mining disturbed areas of the site, and will not overtop or allow interconnection of groundwater aquifers of different water quality
- Watercourse diversions will be realigned where required and rehabilitated to form a stable landform that allows relinquishment of the water licences

6.1.7.7 Roper area

Within the Roper area, further studies are required to close existing knowledge base gaps and confirm if any on-going water management is required. Changes to residual void catchments and tailings/rejects storages will influence void lake heights, volumes of surface flows, groundwater recovery duration and heights and groundwater migration pathways. Additional data collection and modelling, primarily around groundwater aquifers and geochemistry, is required to develop a closure landform design that meets current standards, manages risks and PMLUs that achieve a stable condition at closure.

The PRCP schedule rehabilitates this area as soon as practicable. Table 32 and Table 34 in Sections 6.1.1.6 and 6.1.3.6 detail the timelines required to address the groundwater and geochemistry knowledge base gaps, before commencement of the first rehabilitation milestone and achievement of the rehabilitation milestones as soon as practicable.

An amendment will be submitted if the water management plan to manage the potential risks of the Roper area results in changes to the PRCP schedule.

Table 39: SSM surface water diversion details and forward work plans

Details	Downs Creek	Lotus Creek	Stephens Creek	Scott and Sandy Creeks	Rolf Creek
Water licence	402409	402409	0426519F	46304F	34744F
River catchment	Isaac River, Fitzroy Basin	Isaac River, Fitzroy Basin			Isaac River, Fitzroy Basin
Upstream catchment area (km²)	24	15	582	473	510
Year of construction	2007	2007	1992	Between 1983 and 1989	Early to mid-1990's
Diversion length (km)	1.1	1.0	2.7	0.3	2.8
Diversion assessment outcome	Diversion in its existing alignment will continue to progress towards the watercourse PMLU final milestone criteria. Diversion will be relinquished in its existing alignment following implementation of the forward work plan commitments.	Diversion in its existing alignment will continue to progress towards the watercourse PMLU final milestone criteria. Diversion will be relinquished in its existing alignment following implementation of the forward work plan commitments.	Diversion in its existing alignment will continue to progress towards the watercourse PMLU final milestone criteria. Diversion will be relinquished in its existing alignment following implementation of the forward work plan commitments.	Equalisation channel planned to be backfilled to natural ground level.	At closure, the existing diversion alignment is not expected to achieve a watercourse PMLU to a stable condition. Diversion requires implementation of the forward work plan commitments.
Operational phase	Routine monitoring and maintenance of the diversion during the operational phase of the mine.	Routine monitoring and maintenance of the diversion during the operational phase of the mine.	Routine monitoring and maintenance of the diversion during the operational phase of the mine.	Routine monitoring and maintenance of the equalisation channel during the operational phase of the mine.	Routine monitoring and maintenance of the diversion during the operational phase of the mine.

Details	Downs Creek	Lotus Creek	Stephens Creek	Scott and Sandy Creeks	Rolf Creek
Forward work plan - diversion construction	N/A	N/A	N/A	N/A	When surrounding rehabilitation activities are planned, progress concept design (Appendix L) to functional design, including undertaking site specific investigations to ensure the design addresses key risks. Construction of the diversion in line with the final functional design, developed based on DNRME (2019) and ACARP (2014) guidelines.
Forward work plan – infrastructure	N/A	N/A	Removal and rehabilitation of in-stream and adjacent mine infrastructure areas including the haul road, culverts and levee banks.	Removal of the existing haul road culverts. Backfilling and rehabilitation of the equalisation channel.	Removal and rehabilitation of any current or future mine infrastructure near the diversion. Backfilling of Browns Dam to make freedraining.
Forward work plan – final landform	N/A	N/A	N/A	N/A	Re-grade, topsoil and revegetate adjacent spoil dumps.

Relationship with PRCP schedule

The closure landform design with residual voids will provide a landscape that does not require ongoing active water management. The watercourse diversions will be realigned, where required, and rehabilitated to form a stable watercourse PMLU that allows for relinquishment of the water licences. The Roper area will be subject to additional technical studies, that will close knowledge base gaps to support rehabilitation and management activities.

6.1.8 Revegetation

PRCP Guideline (Section 3.6.1)

The revegetation plan must propose activities that will establish self-sustaining vegetation communities that are appropriate for the intended PMLU (e.g. natural ecosystems, grazing, forestry and some agricultural and other land uses). Revegetation should, therefore, not only establish a ground cover, but also, in some domains, establish associated fauna habitat and other ecological services.

The rehabilitation planning part must include details of the site preparation required for rehabilitation activities.

6.1.8.1 Revegetation objectives

The revegetation objectives of the planned cattle grazing, grassland, woodland habitat and watercourse PMLUs are consistent with the rehabilitation milestone criteria:

- Cattle grazing:
 - Achieve >50% groundcover
 - Appropriate management of leucaena plants
 - Establishment of cattle grazing pasture with land suitability class ≤3
- Grassland:
 - Achieve groundcover ≥50% on slopes ≤15%, or ≥80% on slopes >15%
 - Establishment of grass species to support stability
- Woodland habitat:
 - Achieve groundcover ≥50% on slopes ≤15%, or ≥80% on slopes >15%
 - Establishment of vegetation with species richness of ≥2 trees, ≥3 shrubs and ≥4 grasses, and tree canopy cover of ≥16%
- Watercourse:
 - Achieve riparian vegetation index ≥ upstream or downstream values

There are no revegetation objectives for the planned NUMAs.

The above revegetation objectives for groundcover consider groundcover to be anything in contact with the soil surface, for example live cover, standing dry cover, organic litter (including leaves, hay, woody debris) or rocks.

Infrastructure, such as fencing, maybe required to restrict livestock from areas revegetated to achieve a grassland PMLU.

6.1.8.2 Species of conservation significance

SSM has no obligations under the EA requiring specific inclusion of species of conservation significance in the revegetation planning. Nonetheless, areas adjoining undisturbed Endangered or Of Concern REs (Section 1.2.8) or threatened species habitats (Section 1.2.9) will be rehabilitated to a woodland habitat PMLU wherever

possible. This approach will provide connectivity between rehabilitated areas and existing vegetation and habitat values. Similarly, areas rehabilitated to a watercourse PMLU will connect existing riparian habitat values for several conservation significant species.

6.1.8.3 Fauna habitat and use requirements

There are no obligations under the EA to establish fauna habitat and/or fauna use in the rehabilitation areas for SSM. However, areas adjoining undisturbed threatened fauna species habitats (Section 1.2.9) will be rehabilitated to a woodland habitat PMLU wherever possible, and disturbed areas of watercourses will be rehabilitated to a watercourse PMLU.

Woodland habitat and watercourse revegetation rehabilitation will include a combination of *Eucalyptus, Corymbia* and non-Eucalyptus framework tree species and woody understorey species that will provide broad habitat values for highly mobile fauna taxa including birds and mammals (e.g. kangaroos and wallabies), as well as longer term foraging and shelter opportunities for common fauna species and several species of conservation significance (e.g. koala, echidna).

6.1.8.4 Revegetation seed provenance

The provenance (where the seed comes from) is a consideration for all species. Although the local provenance boundary locations may differ between species, as a preference seed should be sourced from the Brigalow Belt North bioregion.

Proof of provenance will be sought from the seed suppliers along with germination and viability certificates for purchased seeds.

6.1.8.5 Cattle grazing and grassland revegetation species and seeding rates

Cattle grazing PMLU is predominately planned for the lower gradient areas disturbed by mining activities, areas that require shallow rooted species and/or areas where there was significant clearing prior to mining (RA3, RA13 and RA14). Grassland PMLU is planned for areas that require shallow rooted species, but where cattle may impact the stability and integrity of the TSF or rejects cover (RA16).

The growth media for cattle grazing and grassland will be pre-stripped topsoil, spread over rehabilitated landforms at a depth ≥150mm, and ameliorated as recommended by an AQP (refer to Section 6.1.4).

The recommended revegetation species mix for cattle grazing PMLU is based on seeding native and naturalised exotic species that are perennial, productive and palatable (3P) grasses and legumes cognisant of grazing best management practice (DES, 2022a; Future Beef, 2022). 3P grasses have been recommended based on species known to occur on SSM, as well as a selection of pasture species suitable for the soil management groups described in Section 6.1.4. The same grass species have been recommended for the grassland PMLU.

The recommended species list and seeding rates are detailed in Table 40. A seeding rate of 16kg/ha of coated grass seed and 4kg/ha of uncoated legume seed is recommended for a cattle grazing PMLU and a seeding rate of 25kg/ha of coated grass seed is recommended for a grassland PMLU. All seed mixes will also include Japanese millet (*Echinochloa esculenta*) or similar as a sterile cover crop to protect soils from erosion. The cover crop will establish quickly on the exposed surfaces to provide vegetative cover and a root system that will stabilise the surface and prevent erosion until preferred species have established.

Species availability may vary, however at least four 3P grass species and two legumes listed in Table 40 are required for cattle grazing revegetation. The cattle grazing or grassland seed mix composition and seeding rates may be adjusted by an AQP based on the results of ongoing rehabilitation monitoring (Section 8).

Seed mixes are recommended to be sown in the warmer months of the year from September to March, when the probability of rainfall is highest. Seeding may be undertaken at other opportune times, such as for unseasonal climatic conditions.

No seeding of Leucaena (Leucaena leucocephala) is proposed at SSM.

Table 40: Recommended species list and seeding rates for cattle grazing and grassland PMLUs

		Topsoil s	uitability	Seeding rate (kg/ha)	
Scientific name	Common name	Clay	Sand /loams	Cattle grazing	Grassland
Grass species					
Astrebla lappulacea, A, squarrosa, A. elymoides	Mitchell grasses (curly, bull and hoop)	√	-	2º (per species)	5° (per species)
Bothriochloa bladhii	forest bluegrass	-	√	4°	5°
Bothriochloa insculpta cvv. Bisset*	Bisset creeping bluegrass	√	√	4°	5°
Chloris gayana cvv. Callide*	Callide Rhodes grass	✓	√	4°	5°
Chloris gayana cvv. Katambora*	Katambora Rhodes grass	✓	√	4°	5°
Dichanthium sericeum subsp. sericeum	Queensland bluegrass	√	-	4°	5°
Digitaria brownii	cotton panic	-	✓	2°	5°
Heteropogon contortus	black spear grass	✓	✓	2°	5°
Megathyrsus maximus var. pubiglumis*	green panic	-	√	4 °	5°
Panicum coloratum var. makarikariense*	bambatsi panic	√	-	4°	5°
Setaria incrassata*	purple pigeon	✓	-	4°	5°
Urochloa mosambicensis*	Sabi grass	-	√	4°	5°
Grass species - Total seed weig	ht (coated)			16°	25°
Legume species					
Chamaecrista rotundifolia	Wynn cassia	-	✓	2	-
Macroptilium bracteatum*	burgundy bean	✓	-	2	-
Rhynchosia minima var. australis	rhynchosia	✓	✓	2	-
Rhynchosia minima var. minima	rhynchosia	✓	✓	2	-
Stylosanthes hamata*	shrubby stylo	-	✓	2	-
Stylosanthes seabrana*	stylo	✓	-	2	-
Legume species - Total seed we	ight (uncoated)			4	0
Cover Crop					
Echinochloa esculenta	Japanese millet	✓	✓	5	10

c Assumes seed is coated. If not coated, use half prescribed rate; * Naturalised exotic grass species

6.1.8.6 Woodland habitat revegetation

Areas of woodland habitat PMLU are planned on landforms associated with the spoil dumps (RA1 and RA12) and areas near existing vegetation communities (RA4 and RA15).

The approach to woodland habitat revegetation and the monitoring method discussed in Section 8.2, has considered the following OQMRC publications:

- Evaluating methods for assessing native ecosystem mine rehabilitation success (Spain, Nuske, & Gagen, 2023)
- Native ecosystem rehabilitation in Queensland Implications for leading practice (OQMRC, 2023)

The spoil dumps are elevated, sloped anthropogenic landforms comprised of mudstones, claystones, siltstones and sandstones (Section 6.1.5). These landforms vary from pre-mining landforms and do not align with any specific land zone under the RE framework (Wilson & Taylor, 2012).

Woodland habitat revegetation of the spoil dumps aims to achieve a 'hybrid' ecosystem (Spain C. , Nuske, Gagen, & Purtill, 2023). This will be achieved through revegetation with key framework tree, shrub and grass species known to occur within representative REs within and surrounding SSM, as well as species that are better adapted to the macro climatic (i.e. drought, fire, flooding rains, climate change) and micro climatic factors associated with the final landform (i.e. growth media, physical and chemical variation, variation in slope, aspect, altitude).

For RA4 and RA15, where the final landform will be similar to pre-mining landform, revegetation aims to achieve woodland habitat similar to the surrounding vegetation communities.

The growth media for woodland habitat at SSM includes pre-stripped topsoil or an alternative growth media from Permian spoil, as discussed in Section 6.1.4. Woodland habitat growth media will be ameliorated, as recommended by an AQP, prior to deep ripping and seeding (Section 6.1.4). Where topsoil is being used, the depth will be a minimum of 100mm to limit the effects of competition on woodland species due to the potential loads of exotic pasture species (i.e. buffel grass) (Emmerton et al., 2016a) and to provide the best chance of successful establishment of woody species (Emmerton et al., 2016b; Spargo & Doley, 2016).

The representative REs known to occur within or surrounding SSM (Section1.2.8) on hilly, rocky terrain and/or substrates with poorer soils that best align with the woodland habitat rehabilitation landforms include:

- RE 11.4.2 Eucalyptus spp. and/or Corymbia spp. grassy or shrubby woodland on Cainozoic clay plains
- RE 11.4.13 Eucalyptus orgadophila open woodland on Cainozoic clay plains
- RE 11.5.2 *Eucalyptus crebra, Corymbia spp.*, with *E. moluccana* woodland on lower slopes of Cainozoic sand plains and/or remnant surfaces
- RE 11.5.3 *Eucalyptus populnea* and/or *E. melanophloia* and/or *Corymbia clarksoniana* woodland on Cainozoic sand plains and/or remnant surfaces
- RE 11.10.7 Eucalyptus crebra woodland on coarse-grained sedimentary rocks

The woodland habitat revegetation species are known to occur in the representative REs based on their listing in the relevant Regional Ecosystem Technical Descriptions (Queensland Herbarium, 2018).

The species selection for the woodland habitat revegetation areas has also considered ecological functional groupings according to the role or function they perform in both rehabilitation and non-mined environments (Emmerton et al., 2016a; Emmerton et al., 2016b) (Table 41). Short lived wattles (*Acacia* spp.) have been excluded from the species mix as they are unlikely to provide the necessary structure and longer-term ecological function. Intermediate lifespan wattles have been limited in the seed mix. Framework tree species and shrubby understorey species are maximised to provide longer-term ecosystem resilience, structure and function (Emmerton et al., 2016b). Competitive pasture species have also been excluded from the seed mix and only non-aggressive and native grass species have been recommended (Emmerton et al., 2016b).

Table 41: Life form and functional groups assigned to species based on their structural form or ecological function

Life form and functional group	Code	Explanatory notes
Framework trees		
Eucalypt/ bloodwood (Corymbia) species	E/C	Eucalyptus spp., Corymbia spp., and occasionally Angophora spp. (of any height) which can form an upper storey and often form recognisable vegetation communities but may exist within other communities
Non-eucalypt, non- acacia species	NE/NA	Non-eucalypt, non-wattle species (of any height) which can form recognisable communities, or which may exist in isolation and can become part of the upper storey
Long lived acacias	LLA	Wattle species which may form recognisable communities or exist as part of the upper storey in other communities (e.g. <i>Acacia shirleyi</i> , <i>Acacia rhodoxylon</i>)
Woody understory com	ponents	
Shrubby understorey	SU	A shrub is defined as: a woody plant that is multi-stemmed from the base (or within 200mm from ground level) up to 8m in height or if single stemmed, less than 2m tall (Eyre, et al., 2015). Therefore an understorey shrub may include species that are sometimes regarded as small trees
Groundcover shrubs	GCS	Shrubs which form a groundcover
Vines/creepers	V/C	Vines or creepers that are perennial and have a woody component
Intermediate lifespan acacias	ILA	Sub-dominant wattles (<i>Acacia</i> spp.) which do not form a community in undisturbed natural ecosystems but can become dominant in rehabilitation areas
Short lifespan wattles	SLA	Wattles prevalent as an understorey in eucalypt communities with some level of disturbance and relatively short lived (≤10 years)
Introduced woody perennials	IWP	Introduced woody species potentially becoming weeds in some circumstances
Groundcover componer	nts	
Competitive pasture grasses	CPG	Aggressive introduced pasture grass species (considered to detract from ecosystem values)
Introduced grasses	IG	Less competitive naturalised species (less aggressive than the CPG group)
Native grasses	NG	Perennial and annual native grasses. Includes grass like plants (e.g. genera include: <i>Cyperus, Dianella</i> and <i>Lomandra</i>)

6.1.8.7 Woodland habitat seed species and seeding rates

The recommended woodland habitat species are listed in Table 42 along with the associated life form and functional group, preferred growth media and recommended seeding rates.

For RA1 and RA12, the woodland habitat revegetation plan includes 6kg/ha of framework tree species, 4kg/ha of woody understory species and 10kg/ha of grasses. Planting will also include the addition of a sterile cover crop (e.g. Japanese millet or similar) seeded at 5kg/ha to provide initial groundcover.

Seed availability may vary, however seed mixes should ensure that at least six species from each of the main revegetation groups (i.e. framework tree species, woody understorey species and grasses) listed in Table 42 are sown at the overall recommended rate to achieve the required species richness. If recommended species are not available, substitute species from RE 11.4.2, RE 11.4.13, RE 11.5.2, RE 11.5.3 or RE 11.10.7 should be used

For RA4 and RA15, the revegetation seed mix is to be recommended by an AQP based on the location of the rehabilitation in relation to the surrounding vegetation community, and should consider the species and the rates listed in Table 42. Minimal disturbance is planned for some areas of RA4 and RA15, therefore seed application may not be required in all areas.

Revegetation species and rates for woodland habitat may be adjusted by an AQP, to ensure continuous improvement of the rehabilitation outcomes, based on the results of ongoing monitoring (Section 8).

The preferred seeding timing for woodland habitat is either April/May or September/early October when there is sufficient soil moisture in the profile. Sowing in cooler months offers longer periods of surface moisture resulting from rain events, as well as reduced grass competition. Seeding may be undertaken at other opportune times, such as for unseasonal climatic conditions.

Table 42: Recommended species list and seeding rates for woodland habitat PMLU

Species* name	Common name	Life form and functional group code	Clay topsoil	Sand/loam topsoil, ameliorated spoil	Seed rates (kg/ha - uncoated weight)
Framework tree species					
Acacia rhodoxylon	rosewood	LLA	-	✓	0.3 – 1
Allocasuarina luehmannii	bull oak	NE/NA	-	✓	0.3 - 0.5
Alphitonia excelsa	red ash	NE/NA	✓	√	0.3 - 0.5
Angophora leiocarpa	smooth barked apple	E/C	-	✓	0.3 – 0.5
Atalaya hemiglauca	whitewood	NE/NA	✓	✓	0.3 - 0.5
Callitris glaucophylla	cypress pine	NE/NA	✓	√	0.3 - 0.5
Casuarina cristata	belah	NE/NA	✓	√	0.3 - 0.5
Corymbia citriodora subsp. citriodora**	lemon scented gum	E/C	√	✓	1 – 2
Corymbia clarksoniana	Clarkson's bloodwood	E/C	√	✓	0.3 – 0.5
Corymbia dallachiana	Dallachy's gum	E/C	✓	✓	0.3 – 0.5
Corymbia erythrophloia	red bloodwood	E/C	✓	√	0.3 – 0.5
Corymbia trachyphloia	brown bloodwood	E/C	✓	✓	0.2 – 0.5

Species* name	Common name	Life form and functional group code	Clay topsoil	Sand/loam topsoil, ameliorated spoil	Seed rates (kg/ha - uncoated weight)
Eucalyptus crebra	narrow leafed ironbark	E/C	✓	√	1 – 2
Eucalyptus melanophloia	silver leaved ironbark	E/C	✓	√	0.3 – 1
Eucalyptus orgadophila	mountain coolabah	E/C	✓	✓	0.3 - 0.5
Eucalyptus populnea	poplar box	E/C	✓	✓	0.3 - 0.5
Lysiphyllum carronii	red bauhinia	NE/NA	✓	√	0.3 – 0.5
Framework tree species -	total seed weight (und	oated)			6
Woody understory species	5				
Acacia conferta	crowded-leaf wattle	SU	-	✓	0.3 – 0.5
Acacia crassa	curracabah	ILA	-	✓	0.3 – 0.5
Acacia excelsa	ironwood wattle	LLA	✓	✓	0.3 – 0.5
Alstonia constricta	bitterbark	SU/NE/NA	✓	✓	0.3 – 0.5
Breynia oblongifolia	coffee bush	SU	✓	✓	0.3 – 0.5
Capparis Iasiantha, C. canescens, C. Ioranthifolia.	wait-a-while	V/C	√	√	0.2 – 0.5
Carissa ovata	currant bush	GCS	✓	✓	0.3 – 1
Cassia brewsteri**	Leichhardt bean	SU	✓	✓	0.3 – 0.5
Denhamia cunninghamii	yellow berry bush	SU	✓	✓	0.3 – 0.5
Dodonaea viscosa**	sticky hop bush	SU	✓	✓	0.3 – 0.5
Eremophila mitchellii	false sandalwood	SU/NE/NA	✓	✓	0.3 - 0.5
Erythroxylon australe	cocaine tree	SU	✓	✓	0.2 – 0.5
Geijera parvifolia	wilga	SU	✓	✓	0.2 – 0.5
Grevillea striata	beefwood	SU/NE/NA	-	✓	0.3 – 0.5
Grewia latifolia	dogs balls	SU	✓	✓	0.3 – 0.5
Jasminum didymum	native jasmine	V/C	✓	✓	0.3 - 0.5
Owenia acidula	emu apple	SU	✓	✓	0.3 - 0.5
Petalostigma pubescens	quinine	SU/NE/NA	✓	✓	0.3 – 0.5
Pittosporum angustifolium	Gumby Gumby	SU/NE/NA	✓	✓	0.3 – 0.5
Woody understory species - total seed weight (uncoated)					4

Species* name	Common name	Life form and functional group code	Clay topsoil	Sand/loam topsoil, ameliorated spoil	Seed rates (kg/ha - uncoated weight)
Grass species					
Aristida spp (i.e. A. calycina, A. latifolia, A. ramosa, A. caput-medusae, A. jerichoensis, A. personata, A. calycina)	three awned spear grass	NG	1	✓	1 – 2
Bothriochloa decipiens var. decipiens	pitted blue grass	NG	√	✓	1 – 2
Bothriochloa ewartiana	desert bluegrass	NG	✓	√	1 – 2
Chrysopogon fallax	golden beard grass	NG	✓	✓	1 – 2
Cymbopogon refractus	barbwire grass	NG	✓	✓	1 – 2
Cynodon dactylon var. dactylon**	couch	IG	√	✓	2
Dichanthium sericeum subsp. sericeum	Queensland bluegrass	NG	✓	✓	1 – 2
Eulalia aurea	silky brown top	NG	✓	✓	1 – 2
Panicum effusum	hairy panic	NG	✓	✓	1 – 2
Panicum queenslandicum	Yabila grass	NG	✓	-	1 – 2
Themeda triandra kangaroo grass		NG	√	√	1 – 2
Grass species - total seed weight (uncoated)					10
Cover Crop					
Echinochloa esculenta	Japanese millet	Cover crop	✓	✓	5

^{*}If recommended species are not available, substitute species from RE 11.4.2, RE 11.4.13, RE 11.5.2, RE 11.5.3 or RE 11.10.7

6.1.8.8 Watercourse revegetation

Watercourse revegetation activities will be implemented to establish riparian vegetation associated with a watercourse PMLU for the following areas:

- Future surface water diversions
- Existing creek diversions requiring additional revegetation activities
- Natural watercourses or drainage lines which have been disturbed by mining activities

Existing creek diversions that have previously been revegetated are discussed in Section 6.1.7.5 and will be monitored to inform routine maintenance requirements (Section 8.3).

The revegetation zones for natural watercourses (Figure 19) are defined as follows:

Upper bank: defines the lateral limits of both sides of the watercourse or diversion. It does not include the land adjacent. The upper bank generally extends down the riparian profile and is dominated by taller Eucalyptus spp, with a mixed woody and grassy understorey.

^{**}Species adapted to moderate to high salinity tolerance (DERM, 2011)

- Mid bank: occurs between the upper and lower banks and will vary in size depending on the watercourse
 geomorphology or diversion design. The mid bank may include benches created from high flow events. The
 vegetation on the mid bank comprises a mix of species including scattered *Eucalyptus spp.*, as well as
 species that are more adapted to periodic inundation of water and can withstand some disturbance from
 floods (i.e. *Melaleuca* spp.).
- Lower bank (including bank toe): commences at the edge of the low flow channel or stream bed and extends
 up the bank to the area affected by more regular lower flows. The vegetation in the lower bank is dominated
 by scattered trees adapted to wetter environments (i.e. *Melaleuca spp*) and a high ground cover of grasses,
 reeds, sedges and rushes.

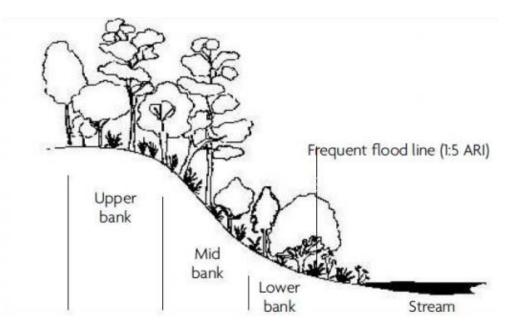


Figure 19: Typical riparian revegetation plantings zone (Vegetation Matters, 2014)

The growth media for watercourse will be pre-stripped topsoil, spread over the bank areas of the rehabilitated landforms at a depth ≥150mm, and ameliorated if recommended by an AQP (Section 6.1.4).

6.1.8.9 Watercourse revegetation species and seeding rates

The watercourse revegetation species are based on selecting framework trees, woody understorey and groundcover species associated with the predominant natural watercourse RE 11.3.25 occurring on the SSM site (Figure 10).

The recommended watercourse revegetation species and seeding rates are listed in Table 43 and Table 44. The planned seeding rate for upper and mid banks is 20kg/ha comprised of 6kg/ha uncoated framework tree, 4kg/ha uncoated woody understorey species and 10kg/ha uncoated grasses and other groundcover species.

The planned seeding rate for lower banks is 15kg/ha comprised of 5kg/ha uncoated framework tree and 10kg/ha uncoated ground species. The revegetation on the lower banks has been designed to establish a higher percentage of ground cover species, including grasses and rushes. Competitive pasture species have been excluded from the seed mix and only non-aggressive grass species are recommended. Short lived wattle species have also been excluded in the seed mix.

Planting in all revegetation zones will also include the addition of a sterile cover crop (e.g. Japanese millet or similar) seeded at 5kg/ha to provide initial groundcover.

The preferred seeding timing for watercourse revegetation is August to October. There is low chance of frost and less likelihood of significant rainfall in this period allowing the best opportunity for vegetation to establish in a relatively non-erosive period. Seeding may be undertaken at other opportune times, such as for unseasonal climatic conditions.

Table 43: Recommended species list and seeding rates for watercourse PMLU – upper and mid banks

Species name	Common name	Life form and functional group code	Seed rate (kg/ha - uncoated weight)
Framework tree species			
Acacia stenophylla*	river myall	LLA	0.5 - 1
Alphitonia excelsa	red ash	NE/NA	0.5 - 1
Angophora floribunda	rough barked apple	E/C	0.5 - 1
Angophora leiocarpa	smooth barked apple	E/C	0.5 - 1
Angophora subvelutina	broadleaf apple	E/C	0.5 - 1
Casuarina cristata*	belah	E/C	0.5 - 1
Casuarina cunninghamiana*	river she oak	NE/NA	0.5 - 1
Corymbia tessellaris*	Moreton Bay ash	NE/NA	0.5 - 1
Eucalyptus camaldulensis subsp. obtusa*	river red gum	E/C	1 - 2
Eucalyptus coolabah subsp. coolabah	Coolabah	E/C	1 - 2
Eucalyptus melanophloia	silver leaved ironbark	E/C	0.5 - 1
Eucalyptus populnea	poplar box	E/C	0.5 - 1
Eucalyptus tereticornis subsp. tereticornis*	Queensland blue gum	E/C	0.5 - 1
Lysiphyllum hookeri	white bauhinia	NE/NA	0.5 - 1
Melaleuca bracteata*	black tea tree	NE/NA	0.5 - 1
Terminalia oblongata	yellowwood	NE/NA	0.5 - 1
Framework tree species - total seed v	veight (uncoated)		6
Woody understorey species			
Acacia excelsa	ironwood wattle	ILA	0.5 - 1
Acacia fasciculifera	scaly bark	ILA	0.5 - 1
Cassia brewsteri*	Leichardt bean	SU	0.5 - 1
Carissa ovata	current bush	GCS	0.5 - 1
Dodonaea viscosa	sticky hop bush	SU	0.5 - 1
Eremophila mitchellii	false sandalwood	SU	0.5 - 1
Erythroxylum australe	cocaine tree	SU	0.5 - 1
Ficus coronata	creek sandpaper fig	SU	0.5 - 1
Ficus fraseri	white sandpaper fig	SU	0.5 - 1
Ficus opposita	sandpaper fig	SU	0.5 - 1

Species name	Common name	Life form and functional group code	Seed rate (kg/ha - uncoated weight)
Grevillea striata	beefwood	SU	0.5 - 1
Grewia latifolia	dogs balls	SU	0.5 - 1
Hakea lorea	bootlace oak	SU	0.5 - 1
Mallotus philippensis	red kamala	SU	0.5 - 1
Petalostigma pubescens	quinine	SU	0.5 - 1
Woody understorey species - total se	ed weight (uncoated)		4
Ground species			
Bothriochloa bladhii	dhii forest blue grass		1 - 2
Capillipedium spicigerum	scented top	NG	1 - 2
Cymbopogon refractus	barbwire grass	NG	1 - 2
Cynodon dactylon*	couch	IG	2
Dichanthium sericeum subsp. sericeum	Queensland bluegrass	NG	1 - 2
Digitaria brownii	cotton panic	NG	1 - 2
Eulalia aurea	silky brown top	NG	1 - 2
Eustrephus latifolius	wombat vine	V/C	1 - 2
Heteropogon contortus	bunched speargrass	NG	1 - 2
Jasminum simplicifolium subsp. australiense	stiff jasmine	V/C	0.2 - 0.5
Lomandra longifolia	mat rush	NG	0.2 - 0.5
Panicum effusum	hairy panic	NG	1 - 2
Paspalidium distans	shot grass	NG	1 - 2
Rhynchosia minima	Rhynchosia	V/C	1 - 2
Themeda triandra	kangaroo grass	NG	1 - 2
Ground species - total seed (uncoated	10		
Cover Crop			
Echinochloa esculenta	Japanese millet	Cover crop	5

^{*} Species adapted to moderate to high salinity tolerance (DERM, 2011)

Table 44: Recommended species list and seeding rates for watercourse PMLU – lower banks

Species name	Common name	Life form and functional group code	Seed rate (kg/ha - uncoated weight)
Framework tree species			
Casuarina cunninghamiana*	river she oak	NE/NA	0.5 - 1
Lophostemon suaveolens	swamp box	NE/NA	0.5 - 1
Melaleuca bracteata*	black tea tree	NE/NA	0.5 - 1
Melaleuca fluviatilis	weeping tea-tree	NE/NA	0.5 - 1
Melaleuca leucadendra*	broad-leaved tea tree	NE/NA	0.5 - 1
Melaleuca linariifolia*	snow in summer	NE/NA	0.5 - 1
Melaleuca trichostachya	flax-leaf paperbark	NE/NA	0.5 - 1
Melaleuca viminalis*	red bottlebrush	NE/NA	0.5 - 1
Framework tree species - total seed w	5		
Ground species			
Bothriochloa bladhii subsp. bladhii	forest blue grass	NG	1 - 2
Cymbopogon refractus	barbwire grass	NG	0.5 - 1
Cynodon dactylon*	couch	IG	2 - 3
Cyperus spp. (C. gracilis, C. polystachyos)**	sedge	NG	2 - 3
Dichanthium sericeum subsp. sericeum	Queensland bluegrass	NG	1 - 2
Eustrephus latifolius	wombat vine	V/C	0.5 - 1
Lomandra longifolia	spiny-headed mat rush	NG	2 - 3
Themeda triandra	kangaroo grass	NG	0.5 - 1
Ground species - total seed weight (u	10		
Cover Crop			
Echinochloa esculenta	Japanese millet	Cover crop	5

^{*} Species adapted to moderate to high salinity tolerance (DERM, 2011); ** Bank toe area only

6.1.8.10 Reference sites

Existing reference sites for cattle grazing, woodland habitat and watercourse PMLUs are detailed in Section 8.4.

Relationship with PRCP Schedule

The revegetation approach for the PMLUs focuses on selection and establishment of suitable species based on the growth media and rehabilitated landforms. Woodland habitat and watercourse rehabilitation considers the inclusion of framework tree species, woody understorey and grass species from REs occurring within or surrounding SSM on similar landforms and substrates. The recommended revegetation species and seeding rates will best support achievement of the cattle grazing, grassland, woodland habitat and watercourse PMLUs.

6.2 Tailings storage facilities

PRCP Guideline (Section 3.6.2)

The tailings require characterisation to determine the geochemistry, rheology and geotechnical parameters that influence the rehabilitation or management strategies and the capacity of the site to support revegetation.

The design for a TSF must include relevant elements:

- lining of TSF (i.e. embankments and base of structure)
- leak detection systems
- cellular design of TSF
- seepage collection systems
- design storage allowance
- spillway location
- designing TSF for progressive rehabilitation.

6.2.1 Tailings context

During operations tailings are generated from washing ROM coal, and typically represents the clay, silt and fine sand fraction of rejects. Tailings were previously disposed into two TSFs at SSM – OTD and Ramp 67. Both tailings facilities are located within the Roper area (Section 1.4.1.2). SSM coal is currently processed at SRM, and no further tailings are planned to be disposed at SSM for the foreseeable future.

A summary of each TSF is included in Table 45 and locations of the SSM TSFs are shown in Figure 20. As is typical of historical TSFs, engineering documentation is limited. BMA has completed investigation and assessment works to retrospectively describe the blueprint and characterisation for the SSM TSFs where possible.

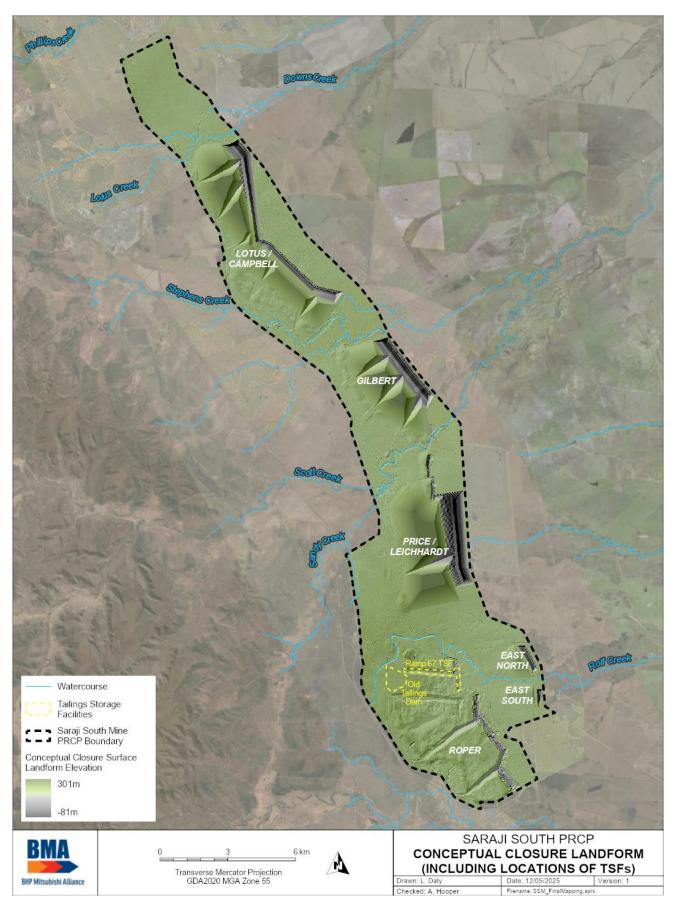


Figure 20: SSM tailings storage facilities

Table 45: Summary of SSM TSFs

TSF		Structure		Operational	Spillway	Decant	Regulated	Rehabilitation
131	Туре	Description	status	-	location	location	structure	strategy
OTD	Downslope turkey's nest	A single cell with containment perimeter embankments on the north and west sides and low spoil piles to the east and south. The facility has also been used as an evaporation pond and water storage.	Inactive	1978 – 1998	North- western end of the north wall	North- western corner	No	Detailed closure design to be developed as part of the Roper area technical studies
Ramp 67	In-ramp/In-pit	Disused mining pit void and ramp that has been filled with tailings. Bounded by spoil to the west and the high-wall to the east. The facility is also being used as for water storage for the BMA central region operations.	Water storage	1998 – 2012	N/A	East side of the pit, on the high-wall side	No	Detailed closure design to be developed as part of the Roper area technical studies

No further tailings are planned to be disposed at SSM for the foreseeable future, however any future tailings disposal strategy at the site will be in accordance with EA condition D6 and will be developed during the remaining life-of-mine, accompanied by a PRCP amendment, if required.

As per condition D6 of the EA, future tailing disposal may include the placement of tailings into voids provided a consequence category assessment in accordance with EA condition G1 has been completed. Additionally, assessments will be undertaken as per the void requirements of the PRCP Guideline to confirm the placement of the tailings in the void does not present an unacceptable risk of environmental harm, prior to future tailings disposal.

The void suitability assessment will include the following:

- Consequence category assessment: in accordance with EA condition G1
- Hydrogeological assessment: including characterisation of the immediately surrounding groundwater aquifer (quality and heights), numerical modelling, groundwater fate and transport modelling and an evaluation of the sink/source relationship with the void
- Void water balance modelling: including an assessment of the sink/source relationship with the groundwater
- Geochemistry and water quality modelling: including an assessment of the impact the placement of the tailings in the void will have on void water quality
- · Conceptual site modelling: including an assessment of potentially complete exposure pathways
- Geotechnical stability and safety assessment

The assessments will provide the following:

- Assessment by an AQP that residual voids continue to meet required stability and safety criteria
- Assessment by an AQP that residual voids continue to not cause environmental harm by:
 - Continuing to act as a long term groundwater sink
 - Permian aquifers and shallower hydrogeological units are not inter-connected
 - No identified, reasonably likely complete exposure pathways, beyond the tenure
- If required, identification of changes to the PRCP schedule

Where the above studies confirm the placement of tailings does not present an unacceptable risk of environmental harm, and there are no changes to the management of the residual void or the PRCP schedule, the residual void will remain a NUMA as outlined within this PRCP. This will typically be where: residual void lakes are maintained on top of the tailings; the residual voids post-mining are collectively modelled to establish as long term groundwater sinks; Permian aquifers and shallower hydrogeological units are not inter-connected; there are no identified reasonably likely complete exposure pathways; and any leachate is not likely to impact environmental values beyond the tenure boundary.

Where the placement of the tailings in the void requires changes to the PRCP schedule, a PRCP amendment will be submitted prior to the future tailings disposal.

6.2.2 Tailings characterisation

Rheological and geotechnical characterisation has been undertaken through a site investigation program and comprehensive laboratory testing suites for OTD. Sampling has generally been carried out across the footprint and vertical profile of OTD. Sampling and testing has not been undertaken at Ramp 67, as safe access to the facility has not been possible.

Additional data will be sourced for both TSFs and further geochemical and geotechnical characterisation work completed for Roper area (Section 1.4.1.2 and Section 6.2.3).

6.2.2.1 Rheology

Most of the samples from OTD were shear thinning as the shear rate increased, with only a few samples showing an increase in the shear stress with increasing shear rate thereafter (indicative of a change in the structure of

the material in response to shear). Viscosity data shows that apparent viscosity decreases by more than two orders of magnitude over the shear rates tested.

Rheological characterisation primarily relates to pumpability and flow behaviour soon after deposition and therefore has limited relevance to the long-term behaviour in TSFs. It can provide an indication of the relative potential for liquefaction in the period from deposition to closure; however, any tendency to flow behaviour reduces over time as the tailings consolidate past a critical state.

6.2.2.2 Geotechnical characterisation

Geotechnical properties for tailings should be considered in the following two groups:

- Those that are inherent to the material regardless of its situation (e.g. particle size distribution, specific gravity, plasticity)
- In situ properties that are affected by the inherent characteristics but also by the stress conditions and moisture distribution within the TSF (e.g. moisture content and dry density, settling density, shear strength, consolidation). Subsequently, stress and moisture are governed by containment, the weight of overlying material, the location of drainage paths, and time since deposition.

While the inherent properties are essentially constant for a particular sample of tailings, in situ properties may vary with location and time. Some in situ properties may be monitored during operation of the TSF to assess the effectiveness of deposition practices, but strength and moisture-density profiles are most useful after deposition has finished and close to when detailed rehabilitation works are being designed and undertaken.

Inherent properties

Results of testing for inherent properties undertaken to date at SSM are summarised in Table 46 and Table 47. Based on this data, tailings at OTD are typically dominated by the silt size fraction (0.075mm to 0.002mm) but are classified as Intermediate Plasticity Silty Clay based on Atterberg Limits (AS1726:2017 Geotechnical Site Investigations). This is typical of coal tailings in the Bowen Basin, including the absence of high plasticity clays (that cause the greatest problems with settlement and strength).

Tailings do not contain gravel, therefore the high proportion of gravel in some samples indicates the samples may have also contained coarse rejects. Additional testing will be required for the Roper area to accurately account for tailings and reject materials.

Table 46: Summary of SSM tailings testing of inherent geotechnical properties

Parameter	Unit	SSM (OTD)*
Particle size distribution		
Clay	%	3 - 42
Silt	%	17 - 74
Sand	%	2 - 75
Gravel	%	0 - 24
Specific gravity		
Specific gravity		1.62 - 2.67
Atterberg limits		
Liquid limits	%	24 - 58
Plastic limit	%	13 - 26
Plasticity index	%	6 - 34

^{*} No sampling or testing of Ramp 67 tailings has been completed due to accessibility limitations

In situ properties

Moisture content and dry density have use in computing consolidation stresses but give only an indirect and approximate indication of strength. Moisture content and densities are summarised in Table 47. Four density determinations were made on samples from OTD. Three of the dry density values were typical of normally consolidated or desiccated tailings. The fourth result was abnormally high and that sample also had a very high specific gravity; the data has been retained in the data set but the sample is flagged as possibly containing some embankment or foundation material.

Table 47: Summary of SSM TSF moisture content and density

Parameter	Unit	SSM (OTD)*
Moisture content	%	11.2 - 82.8
Wet density	t/m³	1.44 - 2.11
Dry density	t/m³	1.02 - 1.80

^{*} No sampling or testing of Ramp 67 tailings has been completed due to accessibility limitations

Settling characteristics are relevant to the performance of TSFs in their operational phase - specifically, how the tailings solids beach, how quickly the surface water clears and can be decanted, and the volume of decant water that can be recovered. Settling behaviour is observed during operations and testing would only be undertaken if issues have been identified. By the time a TSF reaches closure, the tailings will have settled and hence this settling is not an important property in the context of SSM rehabilitation and closure planning.

Tailings has minimal shear strength when initially discharged (being fluid) and strength is only gained over time as the deposit dewaters, densifies, and develops a drier surface crust. Shear strength testing is not considered relevant until deposition is completed and the facility is approaching rehabilitation. Therefore, more important in the rehabilitation context, is the strength profiles in the form of vane shear tests and cone penetrometer tests, which measure in situ strength from the resistance to pushing a cone-tipped instrument vertically into the tailings. Vane shear strength testing of the tailings, both peak and remoulded undrained shear strength, measured from OTD are presented in Table 48.

Table 48: Summary of SSM TSF peak and remoulded shear strengths

Parameter	Unit	SSM (OTD)*
Peak shear strength	kPa	15 - 82
Remoulded shear strength	kPa	5 - 56

^{*} No sampling or testing of Ramp 67 tailings has been completed due to accessibility limitations

Consolidation and desiccation parameters, obtained from laboratory oedometer tests and soil water characteristic curve tests respectively, are not in situ measurements but are used with other in situ data to predict settlement (as distinct from settling) and densification over time.

Oedometer consolidation tests were carried out on four samples from OTD and indicate:

- Compression index (Cc): median of 0.10 but with a range of 0.06 to 0.20
- Coefficient of saturated permeability (k): median values for each sample ranged from 0.5 to 2.6 x 10⁻⁹m/s
- Coefficient of consolidation (Cv): mainly in the range of 10 to 60m²/year

Values for compression index are towards both the high and low ends of the range encountered in Bowen Basin coal tailings and probably reflect the variation in particle size distribution. Coefficients of permeability and consolidation are close to median values for the Bowen Basin. It is noted that laboratory consolidation testing is very sensitive to sample preparation and results should only be used for indicative estimates of actual field performance.

The results of the soil water characteristic curve testing undertaken are summarised in Table 49.

Table 49: Summary of soil water characteristic testing of tailings

Sample legation	Volumetric water content (cm³/cm³)						
Sample location	0 kPa	10 kPa	33 kPa	100 kPa	1,500 kPa		
OTD	39 - 40	31 - 37	25 - 32	16 - 27	7 - 19		

In summary, OTD tailings have geotechnical properties that are typical of coal tailings produced and deposited in the Bowen Basin.

6.2.2.3 Geochemical characterisation

Limited geochemical data is available for the tailings at SSM. Additional geochemical characterisations of the tailings in both TSFs at SSM will be undertaken for Roper area (Section 1.4.1.2 and Section 6.1.3.6).

6.2.3 Rehabilitation strategies

The risk assessment (Section 7.1.3) identifies the risks associated with the TSF geotechnical and geochemical knowledge base gaps and the controls to mitigate the risks. The PRCP schedule rehabilitates the TSFs as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that manages risks and achieves a stable condition at closure. Table 50 details the recommended activities and estimated timeline required to address the TSF geotechnical knowledge base gaps to enable comprehensive characterisation of the tailings to be completed and ensure the cover design addresses the specific risks identified. The commencement of the first rehabilitation milestone and achievement of the rehabilitation milestone will be as soon as practicable once all Roper work packages are complete. The activities will be refined as part of developing the detailed scope of works. The geochemical activities are detailed in Section 6.1.3.6. Commencement of rehabilitation prior to the completion of the recommended activities and earlier than practicable, would be contrary to the purposes of the EP Act and would result in potential for worse environmental outcomes.

Table 50: Recommended Roper area TSF geotechnical work package activities

Activity	Details	Duration (months)
Drill program planning and earthworks to establish safe access	Assessment of TSF geotechnical knowledge base gaps and development of a detailed scope of works, including identification of sampling and geotechnical drilling locations. Scope of work to provide sufficient information to appropriately characterise TSFs to support detailed closure design.	24
	Earthworks to establish safe access to sampling locations and drill sites.	
	Commissioning and scheduling of drilling program.	
Drilling, sampling and analysis	Drilling of geotechnical holes at specified locations to collect tailings samples and capture characteristics.	12
Detailed cover design (Section 6.1.6)	Data collected from geotechnical analysis (along with other inputs) to develop a data driven closure cover design.	18

As detailed in Section 6.1.6, the source hazard assessment for the limited tailings and rejects samples available to date is comparable to that of the neighbouring SRM site. The conceptual cover for tailings will be a non-ponding landform and covered with at least 2m of spoil. An amendment will be submitted if the improved TSF geotechnical and geochemical understanding results in changes to the PRCP schedule.

Relationship with PRCP schedule

The detailed cover designs for each TSF will be developed as part of the technical studies and detailed closure plan for the Roper area.

6.3 Voids

PRCP Guideline (Section 3.6.3)

The information requirements of this domain are dependent on the nature of the proposed PMLU or NUMA for the void. For mine sites with voids, the rehabilitation planning part must include a void closure plan, which includes options for minimising final void area and volume; final void dimensions; pit wall geotechnical and geochemical stability, final slope angles, void hydrology, groundwater modelling, water balance and predicted long-term water quality.

A geotechnical report should focus on how the void will achieve post-closure slopes that will exhibit stability characteristics consistent with the planning and design of the post-closure mine void.

If floodwaters are likely to move over backfilled material, an assessment of the hydraulic properties must be conducted to assess whether instability may occur.

The rehabilitation and management strategies in the plan must include the supervision, verification and auditing of engineering works carried out to achieve the post-closure void landform, to ensure construction is consistent with the geotechnical design.

The rehabilitation and management strategy must also include confirmation that the post-closure landform demonstrates the level of stability as specified by the design.

A void closure plan has been compiled to support the development of this PRCP. The detailed plan – *Norwich Park Mine Void Closure Plan* (WSP, 2024), is provided in Appendix M.

As per the EA, a residual void is "an open pit resulting from the removal of coal and waste rock that will remain following the cessation of all mining activities and completion of rehabilitation processes". Therefore, for this PRCP, a residual void is considered to be the remaining mined out pit below ground level after backfill.

For SSM, the residual voids in the final closure landform (Appendix M, Figure 3.1) are associated with:

- Lotus/Campbell Pit
- Gilbert Pit
- Price/Leichhardt Pit
- East Pit 1
- East Pit 2
- Roper Pit 1
- Roper Pit 2
- Roper Pit 3
- Roper Pit 4

These residual voids are pre-approved as NUMAs (Section 4). The NUMA extents upon closure will achieve an area that is safe and structurally stable and include additional set-backs from the void high-wall and end-wall crests and the low-wall crest within the NUMA, if required to achieve wall geotechnical stability (FoS=1.5), and a safety bund (or equivalent) and fence.

6.3.1 Geotechnical stability

The void closure plan includes a geotechnical stability analysis of the proposed final closure landform residual void high-walls, end-walls and low-walls. The analysis determined the FoS of the walls and the set-back distances, for long-term pit wall stability for the high-walls, end-walls and low-walls, to meet the minimum FoS of 1.5.

Additional set-back distance from the void wall crests are included within the NUMA extent to ensure stability and that no assets (BMA, third-party, or of significant environmental value) are within this boundary at closure.

The low-wall stability analysis results are shown in Table 51. The analysis was undertaken on the worst case low-wall conditions for each void. The as-dumped design of the residual void low-walls meets the minimum FoS for all residual voids except the northern end of Price/Leichhardt and Roper 4. For those residual voids that meet the FoS, no additional set-back distance from the low-wall crest is required. A minimum 25m set-back will be designed between the low-wall crest within the NUMA area and the PMLU boundary to ensure erosion within the NUMA does not impact the surrounding PMLUs.

Table 51: Summary of SSM residual void low-wall stability analysis

				Minim	Additional set-back	
Pit	Residual Void	Low-wall spoil height (m)*	Low-wall floor dip (°)	Overall slope (global stability)	Slope outside NUMA (local stability)	required at NUMA boundary (m)
Lotus/	Lotus (north)	237	4.4	1.9	2.2	0
Campbell Pit	Campbell (south)	201	1.9	2.0	2.4	0
Gilbert Pit	Gilbert	265	2.8	2.9	3.1	0
Price/	Price** (north)	72	8.1	1.3	1.9	40
Leichhardt Pit	Leichhardt (south)	338	4.0	1.7	2.4	0
East Pit	East Pit 1	170	4.3	1.8	2.4	0
	East Pit 2	114	3.1	1.8	2.9	0
Roper Pit***	Roper 1	63	0.4	1.5	3.2	0
	Roper 4**	84	1.7	1.5	14.9	135

^{*} Spoil height is the full low-wall from toe of low-wall to the spoil dump crest (includes NUMA and RA1 low-wall area).

The high-wall and end-wall stability analysis results are shown in Table 52. The as-mined design of some of the residual void high-wall and end-walls have a FoS of less than 1.5 and therefore an additional set-back distance from the high-wall crest has been included in the final closure landform design for all pits to ensure the minimum FoS of 1.5 is achieved. A minimum distance of 50m will be designed between the residual void crest and the toe of the safety bund where the residual void is near a tenure boundary.

Table 52: Summary of SSM residual void high-wall stability analysis

Pit	Residual Void	Depth of Tertiary / weathered (m)	Depth of fresh Permian (m)	FoS at wall crest	Distance from toe of wall to achieve FoS=1.5 (m)
Lotus/	Lotus (north)	40	80	1.71	139
Campbell Pit	Campbell (south)	30	77	1.81	122
Gilbert Pit	Gilbert	19	131	1.43	157
Price/	Price (north)	30	18	0.94 - 1.39	56 - 82
Leichhardt Pit	Leichhardt (south)	40	155	1.41	263

^{**} Required FoS can be achieved either with a bench or buttress of the low-wall toe.

^{***} Roper 2 and 3 residual voids were not assessed as the spoil height and floor dip were not considered to present critical low-wall instability conditions; Following completion of the Roper area technical studies and closure design, low-wall specifications may change

Pit	Residual Void	Depth of Tertiary / weathered (m)	Depth of fresh Permian (m)	FoS at wall crest	Distance from toe of wall to achieve FoS=1.5 (m)
East Pit	East Pit 1	23	59	2.04	98
	East Pit 2	23	59	2.04	98
Roper Pit*	Roper 1**	13	4	≥4.19	20
	Roper 4**	39	17	≥1.70	200

^{*} Roper 2 and 3 residual voids do not have steep sections of in-situ high-wall and therefore were not assessed

As outlined in Section 1.4.1.2, the geotechnical analysis for Roper Pit will be reassessed as part of the technical studies for the Roper area if changes are made to the closure landform.

6.3.2 Void hydrology

6.3.2.1 Water balance

A dedicated void water balance model, based on the final closure landform design (Section 6.1.5), was completed for the period 2023 to 2399 (377 years) to understand water balance behaviour (including climate change considerations) within the residual voids over time (Appendix M).

Key findings for the SSM void water balance are summarised in Table 53. The findings show that after 2370 the water levels start to stabilise for all voids, with a simulated mean inflow being similar to the mean outflow. This indicates that the mean water balance has reached an equilibrium. The equilibrium establishes earlier in the northern voids than the southern voids by approximately a century. As the water levels remain below the groundwater levels for all residual voids (and well below each voids spill point), the voids have a low likelihood of overtopping; and environmental harm beyond the tenure boundary is not expected. Therefore, no management activities are required.

Table 53: Summary of SSM water balance model findings

	Spill Level	Mean water flows	Long-term mean	
Residual Void	(m AHD)	Inflows (ML/yr)	Outflows (ML/yr)	void lake level (mAHD)
Lotus/Campbell	186	1,048	1,048	92
Gilbert	180	604	605	57
Price/Leichhardt	193	936	936	0
East Pit 1	188	201	200	122
East Pit 2	186	55	55	126

6.3.2.2 Groundwater modelling

The groundwater model, detailed in Section 6.1.1.1, indicates that within the residual voids in the northern portion of the site (Lotus/Campbell, Gilbert and Price/Leichardt) and within the area immediately surrounding the East Pit residual voids, inward groundwater hydraulic gradients will establish and be maintained through evaporative losses from the void lakes. The pit lakes that form within these voids, remain below surrounding

^{**} Following completion of the Roper area technical studies and closure design, high-wall specifications may change

recovered groundwater levels and the base of the unsaturated seams (Section 6.1.1.3), therefore, environmental harm beyond the tenure boundary is not expected.

6.3.2.3 Water quality

A geochemical assessment has been undertaken in the void closure plan to identify the geochemical characteristics of high-wall and spoil materials and model the resulting effects on the long-term water quality of the residual void lakes.

The analysis of the void water quality (geochemical stability) for the remaining residual voids at SSM identified the following key findings:

- There are no significant sources of acid generation associated with the post-mining surface water hydrology, and acidic conditions are unlikely to develop in the residual voids
- Evapo-concentration processes will drive water quality in the residual voids
- Preliminary, high-level screening based on predicted TDS levels suggest that all SSM residual voids, except
 Price/Leichhardt may become chemically stratified
- As the Lotus/Campbell, Gilbert, Price/Leichardt and East Pit residual voids stabilise as groundwater sinks
 over time, they do not present an unacceptable risk of environmental harm beyond the tenure boundary

6.3.2.4 Roper area

Within the Roper area, the alignment of the groundwater and water balance models is currently insufficient, which along with limited hydrogeological data, has created a higher level of uncertainty in the numerical models and their outputs. The level of interconnectivity through groundwater aquifers between the four Roper residual voids and the East pits, located down-dip to the east, has increased the complexity of the hydrogeology and void hydrological systems in the area. As discussed in Section 1.4.1.2 and Section 6.1.1.6, further data and technical studies are required to improve the alignment and reduce the uncertainty within the models, before the model outputs are suitable to inform the development of a closure plan that manages NUMAs in a way to minimise risks to the environment. Appendix M details the relevant void assessments for the Roper area, however due to the uncertainties, the modelling results for the Roper voids are not presented within this section.

Due to the limited geochemical data for the tailings and rejects within the Roper area and the uncertainty within the water balance model, the long-term water quality has not been assessed for the Roper residual voids. Additional waste characterisation (Section 6.1.3.6), groundwater (Section 6.1.1.6) and surface water data (Section 6.1.7.7) will be sourced, and further technical studies undertaken for the Roper area to determine the long-term predictions for void lake quality.

6.3.3 Options for minimising final void

The pits will be progressively backfilled during the operation to minimise the final void to the final operational mining strip. Over 80% of the mined out pit voids will be progressively backfilled by the end of mining. As detailed in Section 4.3, the final residual voids presented in the PRCP have been further minimised from the original mine plans including:

- Multiple ramp voids will be progressively backfilled, minimising the number of ramps remaining at closure and the void area
- Steepening the residual void high-walls and low-walls while maintaining the required geotechnical stability.
 Steepening the high-walls and low-walls is also part of the rehabilitation strategy to minimise risk to the environment by reducing the catchment area into the voids
- Increasing the set-back of the high-wall and end-wall from the lease boundary and watercourses to achieve the required FoS (Section 6.3.1)
- Partial void backfill where required to prevent flood ingress (Section 6.1.2)

Additional backfill will be dependent on the mining sequence of the final strips, which may change during the remaining operational period as new geological data becomes available and market factors change, and to ensure backfill does not result in an unacceptable risk of environmental harm beyond the tenure boundary. As

SSM has significant mine life remaining, opportunities for further backfill of the final voids may be refined over the life of the operation and finalised as mining approaches the final strips.

6.3.4 Residual void dimensions and wall angles

Outcomes of the void geotechnical and geochemical stability analyses, void water balance modelling, site-wide hydrogeological and rehabilitation flood modelling have resulted in optimisation of the residual void dimensions towards minimising the extent and location of the NUMAs.

The residual void extents are defined by the high-wall, end-wall and low-wall crests at natural ground level. The void dimensions and wall angles, measured from the wall toe to the wall crest at ground level, are shown in Table 54.

Table 54: Proposed residual void dimensions and overall wall angles

Residual Void	Maximum depth (m)	Maximum length (m)	Maximum width (m)	High-wall overall slope (°)	End-wall overall slope (°)	Low-wall overall slope (°)
Lotus/ Campbell	168	9,000	440	45	37	21
Gilbert	164	3,500	645	45	37	21
Price/ Leichhardt	273	6,390	980	45	37	21
East Pit 1	90	1,260	275	45	37	21
East Pit 2	75	800	255	45	37	21
Roper 1*	18**	1,430	230	50	20	33
Roper 2*	25**	2,330	250	11	15	15
Roper 3*	14**	1,280	290	6	6	6
Roper 4*	67**	4,960	350	22	26	26

^{*} Following completion of the Roper area technical studies and closure design, residual void specifications may change

The residual void high-wall and end-wall profiles will remain as the final excavated wall profile, with numerous mining benches of varying face angles and heights. Each mining bench is offset with a berm of varying widths, reducing the overall final walls to approximately 45°. These wall angles may vary with the final geotechnical design which will be developed as mining approaches the final pit limits, to ensure it is based on the latest material and geotechnical data.

The final low-wall profile within the NUMA area will remain as the final as-dumped profile, with dragline spoil and each truck dump lifts within the NUMA area remaining at angle of repose (37°). The truck dumps are offset from the dragline spoil by two spoil peaks and each truck dump lift is offset by a bench, reducing the overall low-wall angle to approximately 21°. This wall angle may vary with the final geotechnical design which will be developed as mining approaches the final pit limits, to ensure it is based on the latest material, pit floor and geotechnical data.

The NUMA extents achieve an area that is safe and has structural stability and include the additional set-backs from the void high-wall, end-wall and low-wall crests to achieve a minimum FoS of 1.5 plus a safety bund (Section 6.3.1). The overall high-wall and end-wall angles from void wall toe to the NUMA extents at natural ground level are therefore lower than the angles shown in Table 54.

^{**} Accurate void depths are not available due to water within the voids

6.3.5 Improvement and management strategies

The residual voids become available for improvement at SSM once mining of each pit is complete; reshaping of the spoil dump low-wall outside of the NUMA area (within RA1) is complete; any partial backfill for flood mitigation is complete; and they are not being used for water storage. This is for safety reasons, to eliminate the risk of any injury or damage within the NUMA area from the reshaping and rehabilitation activities. Residual voids being used for water storage are available for improvement when they are no longer being used for water storage and are no longer part of the BMA central region water network.

To support attainment of residual voids that are safe and do not present an unacceptable risk of off-tenure environmental harm, the improvement and/or management activities provided in Table 55 will be undertaken.

Table 55: Improvement and/or management strategies for the SSM residual voids

Residual void	Closure objective		ctive	
closure aspect	Safety	Stability	Non- polluting	Improvement and/or management strategy
Geotechnical stability	✓	√	-	For Roper area residual voids: reassess geotechnical stability if modifications are made to the closure landform (Section 6.1.5.7)
				As mining approaches the final limits, an AQP is to reassess the void geotechnical wall designs and set-backs based on the latest available data
				Review and adjust the mine plan and final closure landform, if needed, to account for any revised set-back requirements
				Use a minimum FoS of 1.5 as guidance for ongoing void closure planning. (This may be refined over the mine life should industry research provide optimised guidance on observational methods and consequence assessment)
				A minimum distance of 50m to be designed between the residual void high-wall crest and the toe of the safety bund where the residual void is near a tenure boundary
Void hydrology	✓	√	✓	For Roper area residual voids: review drivers and interactions between surface water and groundwater associated with the residual voids, including any potential interconnectivity within the Roper voids and East Pit voids (Section 6.1.1.6)
				At cessation of mining activities, review and update the void water balance modelling, incorporating identified changes to the closure landform and spill point elevations, rainfall and evaporation, surface water runoff, groundwater inflows, and climate projections
				Residual void catchments are minimised as far as practical and predominantly include only the lowwall areas

	Clo	sure objec	ctive	
Residual void closure aspect	Safety	Stability	Non- polluting	Improvement and/or management strategy
				 Implement management strategies if future modelling identifies an unacceptable risk of environmental harm outside the tenure boundary
				 Obtain certification from an AQP that the residual voids do not present an unacceptable risk of environmental harm outside the tenure boundary
				 If necessary, identify and implement mitigation measures for appropriate protection works of landforms where floodwaters from watercourses interact with final closure landforms
				Low-walls are free draining into the void lake with a maximum of 37° slopes
Void hydrogeology	-	-	✓	 For Roper area residual voids: review drivers and interactions between surface water and groundwater associated with the residual voids, including any potential interconnectivity within the Roper voids and East Pit voids (Section 6.1.1.6)
				 At cessation of mining activities, review and update the groundwater modelling, incorporating updated void water balance model outputs and in- field groundwater sampling data, as required
				 Implement management strategies if future modelling identifies an unacceptable risk of environmental harm outside the tenure boundary
				Obtain certification from an AQP that, upon completion of mining, residual voids do not present an unacceptable risk of environmental harm outside the tenure boundary
				Residual voids must not overtop
				 Residual voids collectively act as a groundwater sinks within the tenure boundary post closure (demonstrated through groundwater modelling)
Void water quality	-	-	√	For Roper area residual voids: undertake geochemical void lake water quality modelling once additional waste characterisation of the area has been undertaken (Section 6.1.3.6)
				At cessation of mining activities, review and update the void geochemical assessment, including additional or refined data from in-pit surface water samples, surface- and groundwater samples, and biochemical modelling
				Implement management strategies if future modelling identifies an unacceptable risk of environmental harm outside the tenure boundary

Desidentenid	Closure objective		ctive	
Residual void closure aspect	Safety	Stability	Non- polluting	Improvement and/or management strategy
				Obtain certification from an AQP that the residual voids will not present an unacceptable risk of environmental harm outside of the relevant tenure boundary
Void access	✓	-	-	On cessation of mining activities:
control				 Construct a safety bund at the geotechnical set-back distance
				 Erect fencing and signage (where required) around the safety bund
				 Obtain certification from an AQP that appropriate access controls are in place to restrict access to humans and livestock
				 Undertake monitoring and maintenance of exclusion fences and bunds
Erosion	√	√	√	A minimum distance of 25m to be designed between the residual void low-wall crest within the NUMA and the PMLU
				Any erosion sediment to be contained within the residual void
				The location of the voids and associated safety bunds does not cause instability or degradation to the land outside of the tenure boundary

Relationship with PRCP schedule

The SSM residual voids will be managed as NUMAs. Long-term geotechnical stability of low-walls, end-walls and high-walls is achieved within the NUMA extents. The residual voids have a low likelihood of overtopping and the northern voids (Lotus/Campbell, Gilbert and Price/Leichardt) will stabilise to be ongoing groundwater sinks after equilibrium has been reached post-mining and will not present an unacceptable risk of environmental harm outside of the tenure boundary.

Geotechnical stability and safety requirements, as well as water levels and water quality will be managed by achievement of the management milestones specified in the PRCP schedule.

Further technical studies and modelling are required in the Roper area to reduce the uncertainties currently in the model for this area and to allow informed rehabilitation and management activities to be undertaken to manage risks identified.

6.4 Underground mining

PRCP Guideline (Section 3.6.4)

For underground mining operations, the rehabilitation planning part must include:

- a geotechnical study
- an assessment of groundwater interactions and potential lowering of groundwater levels
- the development of a hydrogeological conceptual model
- subsidence analysis and modelling and a subsidence vegetation/habitat impact assessment
- consideration of how potential entries to underground workings will be sealed (i.e. through some form of capping or back filling)
- · how surface ponding and cracking will be mitigated
- identification of post-closure stabilisation of underground workings in order to manage the potential for unplanned surface subsidence and unplanned ground collapse such as sinkholes and pot holing.

Not applicable, as there is no underground mining at SSM.

6.5 Built infrastructure

PRCP Guideline (Section 3.6.5)

The administering authority's expectation of rehabilitation relating to built infrastructure is that it will be decommissioned, demolished, salvaged and/or disposed of unless it is being formally retained by the landholder to achieve an appropriate PMLU.

The rehabilitation planning part must include:

- Identification of infrastructure that will be decommissioned and the methods for decommissioning.
- A description of infrastructure that will remain post rehabilitation and the identification of ongoing maintenance requirements.
- Evidence of agreement for any infrastructure that will have ownership transferred.

In accordance with EA condition E10: "All infrastructure, constructed by or for the EA holder during the mining activities including water storage structures, must be removed from the site prior to surrender, except where agreed in writing by the post-mining landowner/landholder." However, the EA further notes that "this is not applicable where the landowner/landholder is also the environmental authority holder", which is the case for some areas of SSM (Section 1.2.12).

Table 56 details the infrastructure associated with the mining activities at SSM. BMA owned surface infrastructure, not beneficial to the PMLU, will be decommissioned and removed in accordance with the EA conditions. Surface infrastructure that may be retained to support the PMLUs will have a demonstrable benefit and required agreements in place prior to rehabilitation, and may include selected: fencing, access tracks, services related infrastructure, sheds and buildings, hardstand areas/transport logistics areas, and water related infrastructure.

Infrastructure not constructed for the purpose of mining, such as dams used for grazing, gates, cattle grates, stock handling/watering areas, access tracks, fire breaks etc., will not be removed as part of rehabilitation works.

Priority will be to repurpose, salvage or recycle any infrastructure to be removed. Demolition and disposal within the mining voids or spoil dumps will only be undertaken when repurpose, salvage or recycle alternatives are deemed by BMA not to be viable. This approach is in line with the waste and resource management hierarchy outlined in the Queensland Waste Management and Resource Recovery Strategy created under the *Queensland Waste Reduction and Recycling Act 2011*.

Table 56: Infrastructure associated with the approved SSM mining activities

Cat	egory	Infrastructure
Built infrastructure	Steel, concrete and brick infrastructure	 Conveyors and transfer stations Surge bins and hoppers Tunnels Train load-out Various buildings e.g. administration, crib rooms, warehouse, laboratory, storage, sheds Workshops Fuel, oil, chemical and water storage Fuel and wash bays Sewage treatment plants Fences
	Supporting services	 Pipes and pumps Power lines Switchyard and substations Communication and lighting towers Concrete pads and bitumen Culverts
Water infrastructure		 Mine affected water dams Raw water dams Sediment dams Drains

The timing of the decommissioning and removal of the infrastructure is based on the proposed timing of the SSM operation, final mining and rehabilitation activities.

Any regional infrastructure associated with roads, railways, power, water and communications supply to landowners or townships is not included in this PRCP.

Further detail on the rehabilitation stages after decommissioning of the infrastructure, such as landform reshape, surface preparation, revegetation and monitoring are covered in the relevant sections of this PRCP.

6.5.1 Built infrastructure

Decommissioning of the built infrastructure with no beneficial use to the PMLU will follow the resource management hierarchy and will include:

- Disconnecting services
- Removing surface built and service infrastructure through salvage or recycling activities, or demolishing and burying in the mining voids or spoil dumps
- Removing below-ground built and service infrastructure to a depth of 0.5m below the surface and
 recycling, or burying in the mine void or spoil dumps, or covering to a minimum depth of 0.5m to enable
 establishment of the PMLUs

- Removing concrete, bitumen and aggregate to a depth of 0.5m below the surface and recycling, or burying in the mine void or spoil dumps, or covering to a minimum depth of 0.5m to enable establishment of the PMLUs
- Disposing of demolition-related putrescible and hazardous wastes at an appropriately licenced facility

Below-ground infrastructure, services and waste deeper than 0.5m in relation to the final landform surface can be retained provided it can meet the following:

- Pipelines have been drained
- Below-ground infrastructure (installed after the approval date of this transitional PRCP) is mapped

6.5.2 Water infrastructure

Decommissioning of the water-related infrastructure constructed for the mining activities with no beneficial use to the PMLU will include:

- Pumping any remaining water to the residual voids, or removing water in accordance with:
 - EA condition F27: "Mine affected water may be piped or trucked or transferred by some other means that does not contravene the conditions of this environmental authority and deposited into artificial water storage structures, such as farm dams or tanks, or used directly at properties owned by the environmental authority holder or a third party for the purpose of: a) supplying stock water subject to compliance with the quality release limits specified in Table F7 (Stock Water Release Limits); or b) supplying irrigation water subject to compliance with quality release limits in Table F8 (Irrigation Water Release Limits); or c) supplying water for construction and/or road maintenance in accordance with the conditions of this environmental authority",
 - EA condition F28: "Mine affected water may be piped or trucked or transferred by some other means that does not contravene the conditions of this environmental authority and deposited into artificial water storage structures, such as dams or tanks, for the purpose of supplying water to any operation licensed for either ERA13 (mining black coal) or ERA31 (mineral processing). The volume, pH and electrical conductivity of water transferred must be monitored and recorded".
 - EA condition F29: "If the responsibility for mine affected water is given or transferred to another person in accordance with conditions F27 or F28: a) the responsibility for the mine affected water must only be given or transferred in accordance with a written agreement (the third party agreement); and b) the third party agreement must include a commitment from the person utilising the mine affected water to use it in such a way as to prevent environmental harm or public health incidents and specifically make the persons aware of the General Environmental Duty under section 319 of the Environmental Protection Act 1994, environmental sustainability of the water disposal and protection of environmental values of waters; and c) the third party agreement must be signed by both parties to the agreement".
- Disposing or covering of mine dam sediment according to the results of an assessment by an AQP
- Removing any mine dam liners
- Breaching mine dam walls and reshaping of the area to make it free-draining
- Removing culverts and drains constructed for mining activities and operations

6.5.3 Contaminated land assessment

In accordance with the EA conditions, contaminants must not be released in a manner that constitutes environmental harm, and spillage of any wastes, contaminants or other materials must be cleaned up as quickly as practicable, stored in accordance with relevant standards and handled in a way that prevents environmental harm.

At completion of mining operations and prior to landform reshaping, surface preparation and revegetation, a contaminated land investigation will be undertaken in accordance with the National Environment Protection (Assessment of Site Contamination) Measure (RM2) for the relevant RAs. Where the progressive rehabilitation areas being investigated for contaminated land do not align with legal cadastral property boundaries, the investigations will not fulfil the requirements of an EP Act compliant Contaminated Land Investigation Document.

To support the assessment of contaminated land risks of individual progressive rehabilitation areas, the contaminated land investigations will be completed by suitably qualified persons (SQP) to a standard that can be used as part of a future EP Act compliant Contaminated Land Investigation Document. Prior to the relinquishment of the mining leases, the progressive rehabilitation contaminated land investigations can be collated to produce an EP Act compliant Contaminated Land Investigation Document that will be used to confirm the suitability of the site for the PMLUs and to amend Environmental Management Register listings or to submit Site Management Plans where required.

The contaminated land investigation will assess the site for the presence of contamination with the potential to adversely impact the nominated PMLUs and/or environmental values. Should land contamination be identified, the potential risks will be assessed and, where required, remediation will be undertaken. A Contaminated Land Investigation Document will be completed in accordance with the EP Act, including a site investigation report, and, where required, a Validation Report and/or a draft Site Management Plan to allow the ML area to be safely utilised for the nominated PMLUs (Section 3).

Verification will be undertaken as part of the final rehabilitation milestone of achievement of PMLU to a stable condition to confirm there are no changes to the contaminated land status completed for RM2 and the requirements of any Site Management Plans have been met.

Relationship with PRCP schedule

Surface infrastructure not beneficial to the PMLU will be decommissioned and removed. Below ground infrastructure will be removed if required to a depth of 0.5m or covered to enable establishment of the PMLU provided there is no ongoing risk of environmental harm and the intended PMLU is not compromised.

A contaminated land assessment will be undertaken at the completion of operations and prior to final landform development and shaping. Remediation and/or management of any identified contamination that has the potential to present unacceptable risks to the nominated PMLU or environmental values, will be undertaken.

6.6 Summary of key rehabilitation and management practices

The key rehabilitation activities and associated rehabilitation milestones are shown in Table 57, and the key management/improvement activities and associated management milestones are shown in Table 58.

Table 57: Key rehabilitation activities and rehabilitation milestones for SSM

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
RA1	Spoil dumps	 Reshape the landform with maximum 30% slopes Cover slopes >15% with minimum 0.5m rock Spread topsoil to a minimum thickness of 100mm or alternative growth media to a minimum thickness of 300mm Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required) Rip along contour of slopes Seed as per recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU 	 Progressive rehabilitation has already commenced Progressive rehabilitation of spoil dump areas as soon as practicable Rehabilitation of spoil dump low-wall area will commence once mining in each pit is complete 	RM3RM5RM8RM11RM14
RA2	Creek/surface water diversions Watercourse crossings	 Remove watercourse crossings and culverts Reshape the disturbed areas within natural watercourse bed and banks to a profile similar to the pre-disturbance condition For creek diversions requiring realignment and rehabilitation, construct diversions in line with the final functional/ detailed designs Spread topsoil a minimum thickness of 150mm, where topsoil has previously been removed Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required) Rip along contour of slopes as required Seed as per recommended seed mix and rates 	Dependent on the location in relation to mining and closure activities, areas are available either at the end of mining or at the end of the major rehabilitation activities, including lowwall reshape	 RM1 RM3 RM6 RM9 RM12 RM15

RA Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
	Undertake monitoring and maintenance to demonstrate achievement of a watercourse PMLU		
MIA Buildings Coal stockpiles Mine dams Roads Train load-out and rail infrastructure Laydown areas General infrastructure and disturbance	 Disconnect services Remove surface built and service infrastructure where there is no beneficial use to the PMLU Remove below ground built and service infrastructure within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU Remove concrete and bitumen within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU Remove machinery and equipment where there is no beneficial use to the PMLU Remove waste not authorised under the EA waste schedule, including demolition waste Assess mine dam water and sediment and dispose appropriately Undertake Contaminated Land Investigation Document, including a site investigation report, and, where required, a Validation Report and/or a draft Site Management Plan Reshape the landform with maximum 12% slopes Spread topsoil a minimum thickness of 150mm, where topsoil has previously been removed Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required by the plan) Rip along contour of slopes Seed with recommended seed mix and rates 	Dependent on the use and location in relation to mining and closure activities: coal stockpiles, rail infrastructure and laydown areas are available at the end of mining; with all other infrastructure, such as administration, crib rooms, workshops, available at the end of the major rehabilitation activities, including low-wall reshape	 RM1 RM2 RM3 RM4 RM7 RM10 RM13

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
		Undertake monitoring and maintenance to demonstrate achievement of a cattle grazing PMLU		
RA4	 Roads Laydown areas Conveyors Exploration General infrastructure and disturbance 	 Where required, dependent on the extent of the disturbance: Disconnect services Remove surface built and service infrastructure where there is no beneficial use to the PMLU Remove below ground built and service infrastructure within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU Remove concrete and bitumen within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU Remove waste not authorised under the EA waste schedule, including demolition waste Decommission drillholes, bores, sediment ponds and sumps Reshape the landform with maximum 15% slopes Spread topsoil to a minimum thickness of 100mm, where topsoil has previously been removed Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required by the plan) Rip along contour of slopes Seed with recommended seed mix and rate Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU 	 Exploration rehabilitation is commenced within six months after exploration activities are complete (as per Eligibility criteria and standard conditions for exploration and mineral development projects) The remaining areas are dependent on the use and location in relation to mining and closure activities: the majority is available at the end of mining; with the remaining available at the end of the major rehabilitation activities, including low-wall reshape 	 RM1 RM3 RM5 RM8 RM11 RM14

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
RA7	Existing rehabilitation	Undertake monitoring and maintenance to demonstrate achievement of a cattle grazing PMLU	Progressive rehabilitation has already commenced	RM10RM17
RA10	Existing rehabilitation	 Seed as per recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU 	Progressive rehabilitation has already commenced	RM8RM11RM18
RA12	Roper area: • Spoil dumps	 Undertake ground works, including leucaena management, to establish safe access for data collection and rehabilitation activities Data collection and technical studies to develop detailed rehabilitation and management plan and designs for Roper area Assessment of contaminated land risk Reshape the landform with maximum 30% slopes Cover slopes >15% with minimum 0.5m rock Spread topsoil to a minimum thickness of 100mm or alternative growth media to minimum thickness of 300mm Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required by the plan) Rip along contour of slopes Seed as per recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU 	 Area is available for rehabilitation The PRCP schedule rehabilitates Roper area as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that manages risks and achieves a stable condition at closure (Section 1.4.1.2) The as soon as practicable timing to commence the first rehabilitation milestone is 10 years, therefore rehabilitation activities are scheduled to commence in 2035 	 RM2 RM3 RM5 RM8 RM11 RM14

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
RA13	Roper area: • Spoil dumps	 Undertake ground works, including leucaena management, to establish safe access for data collection and rehabilitation activities Data collection and technical studies to develop detailed rehabilitation and management plan and designs for Roper area Assessment of contaminated land risk Reshape the landform with maximum 12% slopes Spread topsoil a minimum thickness of 150mm Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required by the plan) Rip along contour of slopes Seed with recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a cattle grazing PMLU 	 Area is available for rehabilitation The PRCP schedule rehabilitates Roper area as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that manages risks and achieves a stable condition at closure (Section 1.4.1.2) The as soon as practicable timing to commence the first rehabilitation milestone is 10 years, therefore rehabilitation activities are scheduled to commence in 2035 	 RM2 RM3 RM4 RM7 RM10 RM13
RA14	Roper area: Roads Dams Laydown areas General infrastructure and disturbance	 Undertake ground works, including leucaena management, to establish safe access for data collection and rehabilitation activities Data collection and technical studies to develop detailed rehabilitation and management plan and designs for Roper area Disconnect services Remove surface built and service infrastructure where there is no beneficial use to the PMLU Remove below ground built and service infrastructure within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU 	 Area is available for rehabilitation The PRCP schedule rehabilitates Roper area as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that manages risks and achieves a stable condition at closure (Section 1.4.1.2) The as soon as practicable timing to commence the first rehabilitation milestone is 10 years, therefore rehabilitation activities are scheduled to commence in 2035 	 RM1 RM2 RM3 RM4 RM7 RM10 RM13

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
		Remove concrete and bitumen within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU		
		Remove machinery and equipment where there is no beneficial use to the PMLU		
		Remove waste not authorised under the EA waste schedule, including demolition waste		
		Assess mine dam water and sediment and dispose appropriately		
		Undertake Contaminated Land Investigation Document, including a site investigation report, and, where required, a Validation Report and/or a draft Site Management Plan		
		Reshape the landform with maximum 12% slopes		
		Spread topsoil a minimum thickness of 150mm where topsoil has previously been removed		
		Assess growth media characteristics to determine ameliorant and other treatment requirements		
		Apply ameliorants and other treatments (if required by the plan)		
		Rip along contour of slopes		
		Seed with recommended seed mix and rates		
		Undertake monitoring and maintenance to demonstrate achievement of a cattle grazing PMLU		
RA15	Roper area: Roads Laydown areas General infrastructure and disturbance	 Undertake ground works, including leucaena management, to establish safe access for data collection and rehabilitation activities Data collection and technical studies to develop detailed rehabilitation and management plan and designs for Roper area 	 Area is available for rehabilitation The PRCP schedule rehabilitates Roper area as soon as practicable once sufficient information is available to close the critical knowledge base gaps and develop a closure plan that 	 RM1 RM3 RM5 RM8 RM11 RM14

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
		Where required, dependent on the extent of the disturbance:	manages risks and achieves a stable condition at closure (Section 1.4.1.2)	
		Disconnect services	The as soon as practicable timing to	
		Remove surface built and service infrastructure where there is no beneficial use to the PMLU	commence the first rehabilitation milestone is 10 years, therefore rehabilitation activities are scheduled	
		Remove below ground built and service infrastructure within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU	to commence in 2035	
		Remove concrete and bitumen within 0.5m of the surface or cover to a minimum depth of 0.5m where there is no beneficial use to the PMLU		
		Remove waste not authorised under the EA waste schedule, including demolition waste		
		Reshape the landform with maximum 15% slopes		
		Spread topsoil a minimum thickness of 100mm where topsoil has previously been removed		
		Assess growth media characteristics to determine ameliorant and other treatment requirements		
		Apply ameliorants and other treatments (if required by the plan)		
		Rip along contour of slopes		
		Seed with recommended seed mix and rates		
		Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU		
16	Roper area:	Undertake ground works, including leucaena	Area is available for rehabilitation	• RM1
	• TSFs	management, to establish safe access for data collection and rehabilitation activities	The PRCP schedule rehabilitates	• RM2
	Rejects areas	Collection and renabilitation activities	Roper area as soon as practicable once sufficient information is available	• RM3
			to close the critical knowledge base	• RM4

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
		 Data collection and technical studies to develop detailed rehabilitation and management plan and designs for Roper area Remove infrastructure to a depth of 0.5m below the final landform surface Assessment of contaminated land risks Tailings and rejects to be covered by a non-ponding landform with at least 2m of spoil cover or as per detailed design Reshape the landform with maximum 30% slopes Cover slopes >15% with minimum 0.5m rock, unless an alternative is justified by an AQP Spread topsoil a minimum thickness of 150mm Assess growth media characteristics to determine ameliorant and other treatment requirements Apply ameliorants and other treatments (if required by the plan) Rip along contour of slopes Seed with recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a grassland PMLU 	gaps and develop a closure plan that manages risks and achieves a stable condition at closure (Section 1.4.1.2) The as soon as practicable timing to commence the first rehabilitation milestone is 10 years, therefore rehabilitation activities are scheduled to commence in 2035	• RM7 • RM19 • RM20
RA17	Roper area: • Existing rehabilitation	Active leucaena management to reduce stem density Undertake monitoring and maintenance to demonstrate achievement of a cattle grazing PMLU	Progressive rehabilitation has already commenced	• RM10 • RM17
RA18	Roper area: • Existing rehabilitation	Seed as per recommended seed mix and rates Undertake monitoring and maintenance to demonstrate achievement of a woodland habitat PMLU	Progressive rehabilitation has already commenced	RM8RM11RM18

RA	Relevant activities	Rehabilitation activities	Commencement of rehabilitation timing	RMs
RA19	Certified rehabilitation	Continued monitoring	Certified	• n/a

Table 58: Key management/improvement activities and management milestones for SSM

IA	Relevant activities	Management/improvement activities	Improvement timing	MMs
IA1	Residual voids	Design high-walls, end-walls and low-walls to achieve a FoS ≥1.5 within the NUMA extents	Available for improvement once the PMLU low-wall spoil reshaping is	MM1MM2
		Design a minimum distance of 50m between the residual void crest and the toe of the safety bund, where against a tenure boundary	complete for each residual void and any partial backfill for flood mitigation is complete, and the residual void is not being used for water storage	• MM3
		Design a minimum distance of 25m between the residual void low-wall crest within the NUMA and the safety bund or equivalent landform		
		Design residual voids to prevent overtopping		
		Undertake predictive groundwater modelling		
		Backfill voids or construct high-wall landforms at the end of mining for flood mitigation as per final flood model		
		Low-walls to free-drain into the void lake with maximum 37 degree slopes		
		Construct safety bund or equivalent landform at geotechnical set-back distance to prevent access to the residual voids		
		Erect fencing and signage around the perimeter of the safety bund, where required		
		Undertake monitoring to demonstrate achievement of sufficient improvement		
		Undertake monitoring and maintenance of exclusion fences and bunds		

IA	Relevant activities	Management/improvement activities	Improvement timing	MMs
IA2	Roper area: Residual voids	Design high-walls, end-walls and low-walls to achieve a FoS ≥1.5 within the NUMA extents	Available for improvement once the residual voids are not being used for	MM1MM2
		Design a minimum distance of 50m between the residual void crest and the toe of the safety bund, where against a tenure boundary	water storage	• MM3
		Design a minimum distance of 25m between the residual void low-wall crest within the NUMA and the safety bund or equivalent landform		
		Design residual voids to prevent overtopping		
		Undertake predictive groundwater modelling		
		Backfill voids at the end of mining for flood mitigation as per final flood model		
		Low-walls to free-drain into the void lake with maximum 37 degree slopes		
	 Construct high-wall landforms to design Construct safety bund or equivalent landform at geotechnical set-back distance to prevent access to the residual voids 	Construct high-wall landforms to design		
		Erect fencing and signage around the perimeter of the safety bund, where required		
		Undertake monitoring to demonstrate achievement of sufficient improvement		
		Undertake monitoring and maintenance of exclusion fences and bunds		

7 RISK ASSESSMENT

Legislative Requirement

In accordance with section 126C(1)(f) of the EP Act, the rehabilitation planning part of the PRC Plan must identify the risks of a stable condition for land described as a post-mining land use not being achieved, and how the applicant intends to manage or minimise the risks.

PRCP Guideline (Section 3.7)

As per section 126C(1)(j) of the EP Act, the administering authority considers it necessary for the proposed PRC plan to contain a risk assessment of all proposed NUMAs. The risk assessment must be carried out to identify the risks of the NUMA causing environmental harm and not being safe and structurally stable and detail how the applicant intends to manage and minimise the identified risks.

The AS ISO 31000:2018 Risk Management – Guidelines (Standards Australia, 2018) describes risk assessment as the overall process of risk identification, risk analysis, risk evaluation and risk treatment. Each of these aspects must be included in the risk assessment in the rehabilitation planning part.

Information requirements in this section apply to all applicants whether or not they are an existing EA holder. Existing holders may have the required information available from previously submitted plans/reports/applications that, if still valid, can be used in the PRC plan.

7.1 Identifying, assessing and treating risks

7.1.1 Risk methodology

A risk-based approach has been applied to the SSM PRCP, following the method described in Figure 21.

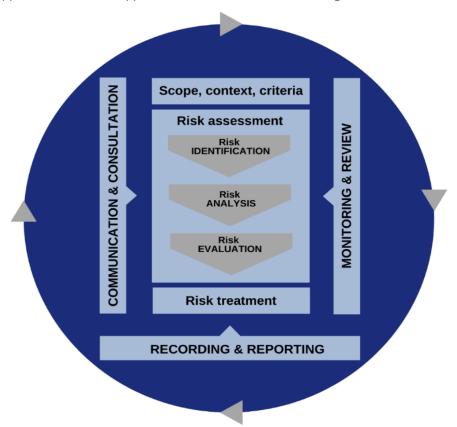


Figure 21: ISO 31000-compliant risk-based approach for the SSM PRCP

7.1.2 Risk identification

Two risk events have been assessed in accordance with the ISO 31000 methodology as presented in Figure 21:

- 1. Stable condition for land described as a PMLU is not achieved where stable condition is defined as per section 111A of the EP Act. For SSM, the PMLUs assessed are cattle grazing, grassland, woodland habitat and watercourse. Dryland cropping PMLU has not been included in the risk assessment as there is no RA, and therefore no rehabilitation activities planned, for dryland cropping PMLU (Section 3).
- 2. NUMA does not achieve safe, structurally stable condition or causes environmental harm.

7.1.3 Risk analysis, evaluation and relevant treatments

The full risk assessment – *Saraji South Mine PRCP Risk Assessment* is included in Appendix N and provides the risk analysis, risk evaluation and risk treatments for each risk scenario.

Worst case outcomes were assessed for each scenario, preventative and mitigating controls required to manage that risk were identified and then a residual risk rating (RRR) was calculated. The BHP likelihood and severity tables, as well as the outcomes of the RRR heat map ratings matrix are provided in Table 59, Table 60 and Table 61 respectively.

Table 59: BHP risk likelihood table

Likelihood	Frequency ¹	Probability ²	Likelihood factor
Highly Likely	Risk likely to occur within a 1-year period	≥80% chance of the Risk occurring	3
Likely	Risk likely to occur within a 1 – 5-year period	60 – 79% chance of the Risk occurring	1
Possible	Risk likely to occur within a 5 – 20-year period	30 – 59% chance of the Risk occurring	0.3
Unlikely	Risk likely to occur within a 20 – 50-year period	10 – 29% chance of the Risk occurring	0.1
Highly Unlikely	Risk likely to occur beyond a 50-year period	<10% chance of the Risk occurring	0.03

¹ Typically used when assessing ongoing or enduring Risks

Table 60: BHP risk impact table

Impact level	Descriptor	Impact factor
5	Significant and lasting impact to environment, climate, community or Indigenous peoples	1,000
4	Significant impact to environment, climate, community or Indigenous peoples	300
3	Moderate impact to environment, climate, community or Indigenous peoples	100
2	Measurable but limited or temporary impact to environment, climate, community or Indigenous peoples	30
1	Minor, low level impact to the environment, climate, community or Indigenous peoples	10

² Typically used when assessing project or one-off/discrete Risks

Likely

Possible

Unlikely

Highly Unlikely

Likelihood

1

0.3

0.1

0.03

Saraji South Mine (EPML00865013) Progressive Rehabilitation and Closure Plan

Table 61: BHP RRR heat map

		Impact level	1	2	3	4	5
		Impact factor	10	30	100	300	1,000
Likelihood	Likelihood factor	Timeframe	(wit	Resid h controls	dual risk r in place		tive)
Highly Likely	3	Within 1 year	30	90	300	900	3,000
I lightly Likely	3	vvitilii i yeai	30	30	000	000	0,000

10

3

1

0.3

30

9

3

0.9

100

30

10

3

300

90

30

10

1,000

300

100

30

With controls in place and implemented effectively, the RRR for the identified risk scenarios of the risk event – a stable condition for land described as a PMLU is not achieved, is deemed to be low (RRR of 30). The risk treatments for each scenario that are necessary for achieving a stable condition for the land described as the PMLU are shown below in Table 62.

Table 62: Necessary risk treatments identified to achieve a stable condition for the PMLUs

Within 1 - 5 years

Within 5 - 20 years

Within 20 - 50 years

Beyond 50 years

Aspect	Risk treatment
Risk event: Stable condition woodland habitat and waterd	for land described as a post-mining land use (cattle grazing, grassland, course) is not achieved
PMLU scenario 1: Landform	failure
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform
Responsibility for plan:	Technical Services
Approval	Site operations
Implementation	
Proposed actions	Materials characterisation
	Selective handling of materials for placement
	Growth media assessment to determine ameliorant and physical treatment requirements
	Landform designed for materials available on-site and what can be achieved based on their properties
	PMLU selected based on what is most appropriate for landform and materials
	Groundcover of vegetation and rock (where appropriate on slopes) to provide erosion resistance
	Rehabilitation monitoring and maintenance

Aspect	Risk treatment
	Review landform design for Roper area once knowledge base gaps are addressed and updated modelling is completed. Revision of the closure landform design may be required to manage catchments and potential rehandle of spoil dump material for TSF and rejects cover
Resource requirements	Available material inventoryErosion modelling
	Equipment capabilities
	Survey
	Rehabilitation monitoring
	Growth media assessment
	Stockpile materials if required
Performance measures and	·
constraints	Comparison against design Tracking against milestone criteria
	Tracking against milestone criteria
Reporting and monitoring	Rehabilitation monitoring
Risk timing and scheduling	From commencement of rehabilitation activities to final achievement of PMLU
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk
PMLU scenario 2: Alteration	of hydrogeological conditions
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform
Responsibility for plan:	Site operations
 Approval 	Environment team
 Implementation 	Technical Services
Proposed actions	Contaminated land investigation undertaken to confirm the suitability of the site for the PMLUs
	Appropriate management, placement, and monitoring of waste (spoil, tailings, rejects) during operations
	Landforms designed and constructed to minimise contaminant generation and transport, and minimise catchments and the potential for flooding of the residual voids
	Revisiting and updating the groundwater model 5-yearly from 2050 to provide confirmation that voids and landforms are not presenting an unacceptable risk to the environment
	Earthworks to enable safe access for drilling and installation of additional groundwater bores in the Roper area
	Additional groundwater data collection for the Roper area to address knowledge base gaps

Aspect	Risk treatment
	Update groundwater modelling for Roper area and develop closure plan
Resource requirements	Groundwater monitoring infrastructure
	Sample collection/gauging and laboratory analysis as per PRCP
Performance measures and constraints	Compliance with milestone criteria
Reporting and monitoring	Reporting of identified releases of contaminants to waters under existing EA requirements
Risk timing and scheduling	From establishment of landforms with sampling as per PRCP monitoring program
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk
PMLU scenario 3: Alteration	of surface water systems
Reasons for selecting treatment option	Ongoing studies and analysis to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform
Responsibility for plan:	Site operations
Approval	Environment team
Implementation	Technical Services
Proposed actions	All imported hazardous materials to be stored and used in accordance with relevant standards and removed from site on completion of operations
	Mine affected water dams to be decommissioned and areas rehabilitated
	Surface water monitoring to be undertaken in accordance with EA and PRCP conditions
	Undertake contaminated land investigation and remediation works as appropriate Rehabilitation of disturbed areas will be undertaken as soon as practical after land becomes available
	Flood assessments consider climate change impacts
	Rehabilitation and monitoring of disturbed reaches of creeks undertaken
	Appropriate management, placement, and monitoring of waste (spoil, tailings, rejects) during operations
	Landforms constructed to minimise the potential for flooding of the residual voids
	Tailings and other waste disposal facilities appropriately covered
	Review and update catchments and flood modelling if the landform is revised for the Roper area

Aspect	Risk treatment
	Update water management plan for Roper area once knowledge base gaps are addressed
Resource requirements	Surface water sampling
	Sampling equipment and infrastructure to allow collection of samples during runoff events
	Flood modelling
Performance measures and constraints	Surface water milestone criteria and water quality objectives
Reporting and monitoring	Monitoring when sufficient runoff or surface water flow events occur
	Reporting under existing EA requirements
Risk timing and scheduling	During runoff or surface water flow events suitable for the collection of surface water samples
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk
PMLU Scenario 4. Watercour	rse diversions not achieving closure objectives
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform
Responsibility for plan:	Site operations
 Approval 	Environment Team
Implementation	
Proposed actions	Watercourse diversion concept designs to be progressed to functional designs when rehabilitation of surrounding areas commences
	Construction of any diversion channels in line with the final functional designs
	Removal and rehabilitation of any mine infrastructure that presents an unacceptable risk to the diversion attaining a relinquishable state (i.e. culverts and dams)
	Rehabilitation of surrounding landforms
	Surface water monitoring
	Watercourse diversion monitoring to relevant IDC standard and maintenance as required
Resource requirements	Progress concept design to functional design, including flood modelling
	Watercourse diversion monitoring and maintenance
	Collection and analysis of water samples
Performance measures and constraints	Watercourse geomorphic index and riparian vegetation index milestone criteria

Aspect	Risk treatment	
	Surface water milestone criteria and water quality objectives	
Reporting and monitoring	 Watercourse diversion monitoring - IDC method Surface water quality data 	
Risk timing and scheduling	As scheduled frequencies from commencement of rehabilitation activities to final achievement of PMLU	
PMLU scenario 5: Contamin attainment of PMLUs	ated land impacting on environmental receptors, rehabilitation and	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Technical Services	
 Approval 	Environment team	
 Implementation 	Site Operations	
Proposed actions	Environmental monitoring and reporting as per the EP Act 1994 and existing EA requirements	
	All stored hazardous materials and infrastructure within the MIA and CHPP, that have the potential to release contaminants to groundwater, will be appropriately recycled or disposed	
	Undertake contaminated land investigation to identify contamination that has the potential to adversely impact the PMLUs	
	Implementation of remediation and/or site management plans as required to reduce potential contaminate land risks	
Resource requirements	SQP to undertake contaminated land investigations and oversee ongoing monitoring requirements	
	Sample collection, laboratory analyses and engineering controls	
Performance measures and constraints	Surface water and groundwater milestone criteria and attainment of site suitability statement	
Reporting and monitoring	Contaminated land investigation document and reporting of water quality as per EA	
Risk timing and scheduling	Contaminated land Investigation and water sampling as per PRCP monitoring program	
	Where necessary, due to current levels of uncertainty, the timeframes for RM2 reflect the time to implement preventative and mitigating controls for TSFs and the rejects dumps.	
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk	

Aspect	Risk treatment	
PMLU scenario 6: Flooding influences on rehabilitation and final landforms		
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Technical Services	
 Approval 	Site operations	
Implementation		
Proposed actions	Removal of infrastructure from watercourses (e.g. culverts) that could adversely impact flow	
	Decommissioning of dams	
	Design of landforms within flood extents that are safe and stable	
	Establishment of vegetation suitable for the watercourse/floodplain environment	
	Establishment of groundcover to manage erosion	
	Flood assessments consider climate change impacts	
	Undertake monitoring for potential landform risks and undertake maintenance	
	Review and update catchments and flood modelling if the landform is revised for the Roper area	
	Update water management plan for Roper area once knowledge base gaps are addressed	
Resource requirements	Flood modelling	
	Rehabilitation monitoring post flood events	
Performance measures and constraints	No flooding damage to landforms up to a 0.1% AEP event	
Reporting and monitoring	Rehabilitation monitoring	
Risk timing and scheduling	As per PRCP monitoring program	
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk	
PMLU scenario 7: Rehabilita downstream	ted landforms result in alteration of flood hydrology upstream and	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Technical Services	
 Approval 	Site Operations	
• Implementation		

Aspect	Risk treatment	
Proposed actions	Removal of infrastructure within watercourse alignments (e.g. culverts) that could adversely impact flows	
	Decommissioning of dams	
	Establishment of landforms that are stable	
	Provide appropriate level of flood protection for residual voids	
	 Undertake monitoring and maintenance works where required to maintain landforms 	
	 Review and update catchments and flood modelling if the landform is revised for the Roper area 	
	Update water management plan for Roper area once knowledge base gaps are addressed	
Resource requirements	Flood modelling	
	Monitoring post flood events	
Performance measures and constraints	No unacceptable damage to infrastructure or ecosystems as a result of changes to flood regime or change to flood extent	
Reporting and monitoring	Rehabilitation monitoring	
Risk timing and scheduling	As per PRCP monitoring program	
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk	
PMLU scenario 8: Insufficier rehabilitation activities	nt or inappropriate growth media and rock resources required for	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Technical Services	
 Approval 	Environment team	
 Implementation 	Site operations	
Proposed actions	Management of topsoil and rock stockpiling	
	Management of rehabilitation material application	
	Review of the growth media and rock resource quantities periodically during operations	
	Growth media assessment to determine ameliorant and fertiliser requirements	
	Application of ameliorants surface treatments as per assessment	
	Rehabilitation monitoring and maintenance	
December requirements	Topsoil and rock inventory	
Resource requirements	i opean and rook in remark	

Aspect	Risk treatment	
	Survey	
	Equipment capabilities	
	Rehabilitation monitoring and maintenance	
	Growth media assessment	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	Rehabilitation monitoring	
Risk timing and scheduling	From planning of soil stripping to final achievement of PMLU	
PMLU scenario 9: Insufficier	nt management of mineral waste	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Engineering team	
Approval	Environment team	
Implementation	Site operations	
	Technical Services	
Proposed actions	Waste characterisation during operations	
	Ongoing material waste sampling during operations	
	In-situ geochemical monitoring of landforms	
	Appropriate material placement and selective handling during operations	
	Surface and groundwater monitoring during operations	
	Earthworks to establish safe access to collect data within the Roper area	
	Sonic drilling to collect tailings and rejects samples and monitoring of boreholes to address hydrogeochemical knowledge base gaps	
	Geochemical static and kinetic testing and additional waste characterisation for Roper area to address knowledge base gaps	
	Update hydrogeochemical modelling for Roper area and develop closure plan	
Resource requirements	Mineral waste characterisation and sampling data	
	In-situ geochemical monitoring	
Rehabilitation monitoring		
	Surface and groundwater monitoring	
Performance measures and constraints	Tracking against milestone criteria	

Aspect	Risk treatment	
Reporting and monitoring	Rehabilitation monitoring	
	Waste characterisation sampling and analysis	
	Surface and groundwater monitoring	
Risk timing and scheduling	Throughout operations to final achievement of PMLU	
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk	
PMLU scenario 10: Failure o	f, or inappropriate engineered cover design	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Technical Services	
Approval	Environment team	
Implementation	Site operations	
	Engineering team	
Proposed actions	Waste characterisation during operations including physical properties of cover materials	
	Ongoing mineral waste sampling during operations	
	In-situ geochemical and geotechnical monitoring of landforms	
	Appropriate materials selected for cover, may require rehandling spoil dump material	
	Surface and groundwater monitoring during operation	
	Earthworks to establish safe access to collect additional geochemical and geotechnical data within the Roper area	
	Address hydrogeological knowledge base gaps and reduce uncertainty in groundwater model and SPR in Roper area (drilling, monitoring, modelling)	
	Address tailings and rejects geochemical knowledge base (drilling, sampling, testing, monitoring, modelling)	
	Address tailings geotechnical knowledge base gaps (drilling, sampling, testing)	
	Detailed cover design based on updated modelling, completed prior to installation	
	Restrict livestock from areas with a cover	
Resource requirements	Final detailed cover design	
	Mineral waste characterisation and sampling data	
	In-situ geochemical and geotechnical monitoring	
	Rehabilitation monitoring	

Aspect	Risk treatment	
	Surface and groundwater monitoring	
Performance measures and constraints	Compliance to cover design	
	Tracking against milestone criteria	
Reporting and monitoring	Rehabilitation monitoring	
	Waste characterisation sampling and analysis	
	Surface and groundwater monitoring	
Risk timing and scheduling	From collection of data for cover design to final achievement of PMLU	
	For the Roper area, progressive rehabilitation to commence as soon as practicable once knowledge base gaps are addressed and a closure plan can be developed to manage the risk	
PMLU scenario 11: Inadequa	te and/or inappropriate revegetation	
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform	
Responsibility for plan:	Environment team	
 Approval 	Site operations	
Implementation		
Proposed actions	Growth media assessment to determine ameliorant and physical treatment requirements for the PMLU	
	Revegetation species aligned to growth media, landforms and PMLU	
	Management of seed selection, provenance and quality	
	Rehabilitation and reference site monitoring	
	Maintenance as identified	
	Existing cattle grazing PMLU rehabilitation areas to be managed considering grazing land suitability limitations (suitable for marginal cattle grazing only)	
	Investigate, develop a plan and implement large scale leucaena management for Roper area	
Resource requirements	Rehabilitation and reference site monitoring	
	Growth media assessment	
	Seed	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	Rehabilitation and reference site monitoring	
Risk timing and scheduling	From growth media planning to final achievement of PMLU	

Aspect	Risk treatment		
PMLU scenario 12: Deteriora	PMLU scenario 12: Deterioration of built infrastructure conditions		
Reasons for selecting treatment option	Ongoing studies and analysis to continue to the end of mine life to demonstrate and confirm that these treatments achieve a stable condition for the proposed closure landform		
Responsibility for plan: Approval Implementation	Environment teamSite operations		
Proposed actions	Undertake a preliminary contaminated land assessment prior to the completion of the approved activities, conduct a detailed site investigation and develop remediation plan if required Rehabilitation monitoring and maintenance		
Resource requirements	SQP to undertake contaminated land investigations and oversee ongoing monitoring requirements		
Performance measures and constraints	Tracking against milestone criteria		
Reporting and monitoring	Rehabilitation monitoring		
Risk timing and scheduling	Throughout operations to final achievement of PMLU		

With controls in place and implemented effectively, the RRR for the identified risk scenarios of the risk event – NUMAs do not achieve safe, structurally stable conditions or causes environmental harm off tenure, is deemed to be low (RRR of 10). The risk treatments for each scenario that are necessary for achieving a safe and structurally stable NUMA that does not cause environmental harm are shown below in Table 63.

Table 63: Necessary risk treatments identified to achieve a safe and structurally stable NUMA that does not cause environmental harm

Aspect	Risk treatment	
Risk event: NUMAs do not a off tenure	Risk event: NUMAs do not achieve safe, structurally stable condition or causes environmental harm off tenure	
NUMA scenario 1: Void walls	do not achieve geotechnical stability	
Reasons for selecting treatment option	Studies and analysis performed showed that these treatments achieve a safe and structurally stable condition for the NUMA	
Responsibility for plan: Approval Implementation	Technical ServicesSite operations	
Proposed actions	 Geotechnical assessment and final void wall design Pit floor treatments as required to improve low-wall stability Geotechnical monitoring during operations 	

Aspect	Risk treatment	
	Updated geotechnical assessment to be completed as mining approaches final limits and wall design and NUMA extent adjusted if required	
	NUMA extents designed to include the required FoS limit	
Resource requirements	Geotechnical assessment and design	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	Geotechnical monitoring	
Risk timing and scheduling	From detailed closure design of each void to relinquishment	
NUMA scenario 2: Uncontrol	led access to NUMA	
Reasons for selecting treatment option	Studies and analysis performed showed that these treatments achieve a safe and structurally stable condition for the NUMA	
Responsibility for plan:	Technical Services	
Approval	Site operations	
Implementation		
Proposed actions	Safety bunding or equivalent landform, fencing and signage placed at FoS limit, where required to restrict access	
	Geotechnical modelling completed to determine FoS limit	
	Visual inspections of safety bund, fencing and signage to identify required maintenance	
Resource requirements	Monitoring and maintenance	
	Geotechnical assessment and design	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	Document visual inspection	
	Geotechnical monitoring	
Risk timing and scheduling	From detailed closure design of each void to relinquishment	
NUMA scenario 3: Uncontrol	led flooding into residual voids	
Reasons for selecting treatment option	Studies and analysis performed showed that these treatments achieve a safe and structurally stable condition for the NUMA	
Responsibility for plan:	Technical Services	
Approval	Site operations	
Implementation		
Proposed actions	Flood modelling including climate change scenarios	

Aspect	Risk treatment	
	Flood mitigation (partial backfill and/or landform) designed to 0.1%AEP flood event which sufficiently manages the flood risk (mitigation to PMF is not warranted due minimal potential consequences of flooding)	
	Flood mitigation installed	
	Review and update catchments and flood modelling if the landform is revised for the Roper area	
	Update water management plan for Roper area once knowledge base gaps are addressed	
Resource requirements	Flood modelling	
	Landform design	
	Monitoring and maintenance	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	Document visual inspection	
	Monitoring	
Risk timing and scheduling	From detailed closure design of each void to relinquishment	
NUMA scenario 4: Water in t	he void causes environmental harm outside of the mining tenure	
Reasons for selecting treatment option	Studies and analysis performed showed that these treatments achieve a safe and structurally stable condition for the NUMA	
Responsibility for plan:	Technical Services	
Approval	Site operations	
Implementation		
Proposed actions	Modelling	
	Flood mitigation designed to 0.1% AEP flood event	
	Flood mitigation installed	
	Groundwater quality and level monitoring	
	Review and update catchments and flood modelling if the landform is revised for the Roper area	
	Additional groundwater data collection for Roper area to address knowledge base gaps	
	Additional drilling and testing of tailings and rejects samples to address geochemical knowledge base gaps	
	Update hydrogeological and geochemical modelling, revise water balance modelling and void closure plan for Roper area once knowledge base gaps are addressed	
Resource requirements	Groundwater and void lake water balance modelling	
	Landform design	
	Monitoring	

Aspect	Risk treatment	
Performance measures and constraints	Tracking against milestone criteria	
Reporting and monitoring	 Groundwater level and quality monitoring Water quality monitoring 	
Risk timing and scheduling	From detailed closure design of each void to relinquishment	

Relationship with PRCP schedule

A risk-based approach has been adopted to develop the milestones in the PRCP schedule. This is primarily driven by the RRR for the identified risk scenarios of the risk event. Should a risk event materialise, the additional proposed actions identified in this risk section will be implemented and, where necessary, adjusted accordingly (in line with the risk treatment identified in this section).

7.2 Rehabilitation trials

PRCP Guideline (Section 3.7.1)

In accordance with section 126C(1)(j) of the EP Act, if rehabilitation trials are planned, the rehabilitation planning part must state:

- the objective of the trial(s)
- the trial design including, but not limited to, the location, underlying land characteristics and potential issues
- the details of how the trial(s) will be carried out
- when the trial(s) will commence
- the duration of the trial(s)
- how the trial(s) will be assessed for success
- how the results of the trial(s) will be incorporated into rehabilitation strategies and the development of milestones, and
- where the trials have previously been carried out by the applicant.

The information requirements in this section will apply to all applicants, whether or not they are an existing EA holder, who have planned or commenced rehabilitation trials. Existing EA holders can provide details of any rehabilitation trials that have occurred prior to the submission of the proposed PRC plan.

No rehabilitation trials are proposed at SSM. Current rehabilitation practices will be executed in line with the PRCP rehabilitation milestone criteria for each PMLU.

8 MONITORING AND MAINTENANCE

PRCP Guideline (Section 3.8)

Under section 126C(1)(j) of the EP Act, the administering authority considers monitoring and maintenance necessary to decide if the PRC plan is consistent with the requirements of the legislation. The rehabilitation planning part must contain a monitoring and maintenance program that identifies and describes the monitoring systems that will be carried out in order to demonstrate a milestone and milestone criteria have been achieved. The program must include, where relevant to the milestone and milestone criteria (but is not limited to):

- schedule of monitoring, reporting and review for each milestone
- description of methodologies and standards, which could include field-based assessments and the application of new remote sensing, GIS and other relevant emerging technologies
- monitoring that enables the repeatable collection of relevant statistically valid data
- monitoring using appropriate quality assurance and data management processes and systems
- · regular analysis of site data including multi-year comparison trends and bench-marking against analogue/reference sites
- contingency strategies if monitoring data indicates milestone criteria are not being met
- post-closure monitoring to ensure milestone criteria has been demonstrated
- intent of monitoring reports, such as provision of results and key findings

The information requirements in this section will apply to all applicants whether or not they are an existing EA holder. However, existing holders may already have the required information available from previously submitted plans/reports/applications that, if still valid, could be used in the PRC plan. If there has/is any monitoring or maintenance of areas already rehabilitated, details must be included in the PRC plan.

8.1 Rehabilitation monitoring

Rehabilitation milestone monitoring will be undertaken at SSM by an AQP (as per condition A5 of the EA) to demonstrate achievement of the PMLUs of cattle grazing, grassland, woodland habitat or watercourse.

The rehabilitation milestones and associated milestone criteria for SSM are detailed in Section 1.4.2 and Section 10.4. A combination of monitoring, reporting and data analysis approaches will be used to demonstrate the achievement of the rehabilitation milestones as detailed in Table 64. Monitoring and maintenance activities will continue after rehabilitated areas achieve the final rehabilitation milestone (achievement of PMLU to a stable condition) and/or are certified.

Table 64: Rehabilitation milestones with relevant reporting requirements

Milestone reference	Rehabilitation milestone	Reporting requirements
RM1	Infrastructure decommissioning and removal	 Document visual inspections Map of retained below-ground infrastructure (installed after the approval date of this transitional PRCP) Document regulated waste removal Assessment report for mine water dams
RM2	Remediation and/or management of contaminated land	 Contaminated Land Investigation Document, including a site investigation report, and, where required, a Validation Report and/or a draft Site Management Plan Site assessment reports for individual areas of progressive rehabilitation that will be suitable to form
		part of a future Contaminated Land Investigation Document

Milestone reference	Rehabilitation milestone	Reporting requirements
RM3	Landform development and reshaping	 Survey/LiDAR of landform Analysis of final landform, cover design and erosion and sediment control systems against design Assessment that the landform is geotechnically stable with FoS ≥1.5 (RA1, RA12, RA13, RA16) Detailed cover design (RA16)
RM4	Surface preparation (cattle grazing and grassland)	Document growth media depth Growth media assessment and amelioration and physical treatment plan Document ameliorants and physical treatments applied
RM5	Surface preparation (woodland habitat)	 Document growth media depth Growth media assessment and amelioration and physical treatment plan Document ameliorants and physical treatments applied
RM6	Surface preparation (watercourse)	 Document growth media depth Growth media assessment and amelioration and physical treatment plan Document ameliorants and physical treatments applied
RM7	Revegetation (cattle grazing and grassland)	Document seed mix, purity information, planting timing, seed application rates and areas
RM8	Revegetation (woodland habitat)	Document seed mix, purity information, planting timing, seed application rates and areas
RM9	Revegetation (watercourse)	Document seed mix, purity information, planting timing, seed application rates and areas
RM10	Achievement of surface requirements (cattle grazing)	Rehabilitation monitoring as per Sections 8.1, 8.2 and 8.5
RM11	Achievement of surface requirements (woodland habitat)	Rehabilitation monitoring as per Sections 8.1, 8.2 and 8.5
RM12	Achievement of surface requirements (watercourse)	Rehabilitation monitoring as per Sections 8.1, 8.3 and 8.5
RM19	Achievement of surface requirements (grassland)	Rehabilitation monitoring as per Sections 8.1, 8.2 and 8.5
RM13	Achievement of post-mining land use to a stable condition (cattle grazing – RA3, RA13, RA14)	 Rehabilitation monitoring as per Sections 8.1, 8.2 and 8.5 Hazard assessment Landform geotechnical FoS certification

Milestone reference	Rehabilitation milestone		Reporting requirements
		Built infra	astructure survey
RM14	Achievement of post-mining land use to a stable condition (woodland habitat – RA1, RA4,	and 8.5	ation monitoring as per Sections 8.1, 8.2
	RA12, RA15)		assessment (PA4 PA40)
			n geotechnical FoS certification (RA1, RA12)
		Built infra	astructure survey
RM15	Achievement of post-mining land use to a stable condition	Rehabilit and 8.5	ation monitoring as per Sections 8.1, 8.3
	(watercourse – RA2)	Hazard a	assessment
		Functional diversion	al diversion design (if required for realigned
		Built infra	astructure survey
RM17	Achievement of post-mining land use to a stable condition (cattle		ation monitoring as per Section 8.1 and 8.2
	grazing, existing rehabilitation –	Hazard a	assessment
	RA7, RA17)	Built infra	astructure survey
RM18	Achievement of post-mining land	Rehabilit	ation monitoring as per Section 8.1 and 8.2
	use to a stable condition (woodland habitat, existing rehabilitation – RA10, RA18)	Hazard a	assessment
RM20	Achievement of post-mining land use to a stable condition	Rehabilit and 8.5	ation monitoring as per Sections 8.1, 8.2
	(grassland – RA16)	Hazard a	assessment
		Landform	n geotechnical FoS certification

8.1.1 Remote sensing and technology

The current rehabilitation monitoring program utilises the capture and analysis of field data. Future advances in monitoring could include developments in remote sensing, technology and/or digital data capture which may be incorporated into the program, wherever practical.

8.1.2 Erosion monitoring

Erosion monitoring will be conducted for all PMLUs at the frequencies in Table 66 and Table 71, and will support achievement of surface requirements and PMLU to a stable condition.

"There is no consensus in Australia on a quantitative or precise definition of what constitutes minor, moderate and/or severe erosion" (National Committee on Soil and Terrain, 2024). For this reason, the best approach to assess the state and severity of erosion is by an AQP during monitoring. Type of erosion and the associated severity will be recorded based on the erosion classifications in Table 65. For gully erosion, gully depth will also be recorded as 0.3 - 1.5m, 1.5 - 3.0m, or >3m.

Sheet, rill or gully erosion classified as severe according to the Australian soil and land survey field handbook (National Committee on Soil and Terrain, 2024) will be repaired (Table 65). Minor or moderate erosion, plus other erosion types, such as tunnel erosion, will be assessed by an AQP and will be repaired if assessed as requiring intervention to ensure the PMLU is achieved. This ensures the erosion is assessed holistically, such as to ensure corrective actions/maintenance activities do not cause more damage.

The rehabilitation milestones for the achievement of PMLU to a stable condition require a safety hazard assessment to be completed, which ensures any erosion that is a safety hazard is subject to corrective actions.

Table 65: Erosion type and severity

Functions	Erosion severity					
Erosion*	No erosion Min		Moderate	Severe		
Sheet erosion	No sheet erosion present	Indicators may include shallow soil deposits in downslope sediment traps (fencelines, farm dams). Often very difficult to assess as evidence may be lost with cultivation, pedoturbation or revegetation.	Indicators may include partial exposure of roots, moderate soil deposits in downslope sediment traps (fencelines, farm dams)	Indicators may include loss of surface horizons, exposure of subsoil horizons, pedestalling, root exposure, substantial soil deposits in downslope sediment traps (fencelines, farm dams)		
Rill erosion (≤0.3m deep)	No rill erosion present	Occasional rills	Common rills	Numerous rills forming corrugated ground surface		
Gully erosion (>0.3m deep)	No gully erosion present	Gullies are isolated, linear, discontinuous and restricted to primary or minor drainage lines	Gullies are linear, continuous and restricted to primary and minor drainage lines	Gullies are continuous or discontinuous and either tend to branch away from primary drainage lines and on to footslopes, or have multiple branches within primary drainage lines		

^{*}Erosion classification definitions (National Committee on Soil and Terrain, 2024)

8.2 Cattle grazing, grassland and woodland habitat monitoring

8.2.1 Monitoring schedule

The rehabilitation monitoring program follows a phased approach as detailed in Table 66. Initial monitoring is undertaken on an annual basis for the first three years to primarily assess vegetation establishment. This approach allows a timely assessment of the performance of rehabilitation post initial seeding and provides critical information to determine if rehabilitation is on track towards achieving surface requirements, or if maintenance is required.

Additional rehabilitation parameters are included into the monitoring program in years three, five, 10 and five-yearly thereafter, to assess and track achievement of surface requirements (RM10, RM11 and RM19) and achievement of PMLU to a stable condition (RM13, RM14, RM17, RM18 and RM20). The phased approach of the monitoring program enables regular analysis of rehabilitation monitoring data, including multi-year comparison of trends.

Monitoring of cattle grazing and woodland habitat reference sites will be undertaken for the parameters listed in Table 66 and will be implemented as per the monitoring schedule from Year 3.

Table 66: Cattle grazing, grassland and woodland habitat PMLU monitoring schedule and measured rehabilitation parameters

	Monitoring schedule						
Rehabilitation parameter	Year 1	Year 2	Year 3	Year 5	Year 10+ (5-yearly thereafter)		
Cattle grazing/ grassland/wood	dland habitat	PMLUs					
Landform and erosion	✓	✓	✓	✓	✓		
Soil and spoil	✓	-	✓	✓	✓		
Cattle grazing PMLU					•		
Groundcover	✓	✓	✓	✓	✓		
Species richness (3P grasses)	✓	✓	✓	✓	✓		
Invasive plants	✓	✓	✓	✓	✓		
Grazing land suitability assessment	√	-	✓	✓	√		
Land condition	-	-	✓	✓	✓		
Pasture condition	-	-	✓	✓	✓		
Grassland PMLU							
Groundcover	✓	✓	✓	✓	✓		
Species richness (grasses)	✓	✓	✓	✓	✓		
Invasive plants	✓	✓	✓	✓	✓		
Woodland habitat PMLU							
Groundcover (including native perennial grass cover, litter cover, non-native plant cover)	✓	✓	✓	✓	✓		
Species richness (trees, shrubs, grasses, forbs/other)	✓	√	✓	✓	√		
Tree height	-	-	✓	✓	✓		
Tree canopy and shrub layer cover	-	-	✓	✓	√		
Recruitment	-	-	✓	✓	✓		
Invasive species	✓	✓	✓	✓	✓		
Tree stem count/basal area	-	-	✓	✓	✓		

8.2.2 Rehabilitation monitoring sites

Representative permanent rehabilitation monitoring sites for each PMLU will be established as part of the initial rehabilitation monitoring (Year 1) and will be assessed during all phases of rehabilitation monitoring. The permanent field monitoring sites should be selected using the following criteria:

- · Representative of rehabilitation slope
- Accessible (vehicle access preferred)

Selection of suitable reference sites for cattle grazing, woodland habitat and watercourse PMLUs are discussed in Section 8.4.

8.2.3 General rehabilitation monitoring parameters

8.2.3.1 Landform and erosion

Landform and erosion will be assessed as part of all monitoring phases (Table 66). Prior to commencing the field monitoring work, a desktop assessment using LiDAR data and aerial imagery will be completed to assess the rehabilitated slope against the landform design, and the ongoing monitoring of the landform and slopes.

The desktop analysis will identify potential areas of major ponding due to dump settlement, areas of deposition (where the ground level has increased over time), as well as the progression of erosion features such as developing gullies.

Field-based erosion monitoring will be conducted at the permanent monitoring sites, as well as any new areas identified in the desktop assessment. If erosion is present, an erosion monitoring transect will be established by running a 50m tape perpendicular to the slope and across the erosional activity identified by the LiDAR analysis. Erosion will be assessed based on the classifications in Section 8.1.2.

8.2.3.2 Soil and spoil

The parameters detailed in Table 67 will be analysed during all monitoring events for soils and spoils. Soil profile pits or cores will be located within close proximity to the permanent rehabilitation monitoring sites. Surface sampling depth refers to top 0-10cm; and sub-surface sampling depth refers to layers at 10-30cm, 30-60cm and 90-100cm.

Table 67: Soil and spoil analysis parameters for rehabilitation monitoring

				epth
Category	Analyte	Purpose of analyte	Surface	Sub- surface
Acidity / alkalinity	pН	Identify anomalies that may affect plant growth and sustainability	√	√
Salinity	EC	Identify leaching profile. High salinity can lead to poor vegetation germination and establishment, reduced plant growth and vigour	~	✓
Exchangeable cations	CEC	Major factor in soil fertility. Controls soil stability, nutrient availability and buffers soil's chemical properties	✓	✓
	Exchangeable Sodium Percentage (ESP)	ESP is a measure of the dominance of sodium ions on the soil's cation exchange complex. Sodicity in soils can lead to slaking and dispersion which impact soil structure and stability	√	√

			De	epth
Category	Analyte	Purpose of analyte	Surface	Sub- surface
Organic matter	Organic carbon	An indicator of soil nutrient stores and a contributor to improvements in soil structure. Increases in organic carbon is a key indicator of rehabilitation success	✓	1
Major elements	Total Nitrogen	Indicator of soil nutrient store and is also a major plant nutrient	✓	-
	Extractable Phosphorous (Colwell method)	Indicator of phosphorous readily available to plants	~	-
	Total Phosphorous	Indicator of total store of phosphorous, some of which is readily available. Key indicator of potential for long-term success or failure of rehabilitation	*	-

8.2.4 Cattle grazing specific rehabilitation parameters

8.2.4.1 Groundcover

Groundcover will be assessed at the permanent rehabilitation monitoring sites as part of all monitoring events. Groundcover type is recorded as either live cover (with native and non-native species recorded), standing dry cover, organic litter (fine and coarse organic material, such as fallen leaves, twigs, branches and hay), rocks, or bare ground. The percentage of total groundcover (anything in contact with the soil surface) is calculated. The percentage of cover will be assessed within five 1m x 1m quadrats and averaged to give a value for the monitoring point.

8.2.4.2 Species richness

The number of 3P grasses will be recorded as part of all monitoring phases.

8.2.4.3 Invasive plants

An invasive plant is a prohibited or restricted matter under the Queensland *Biosecurity Act 2014*, and is defined as a species that has, or is likely to have an adverse impact on a biosecurity consideration because of the introduction, spread or increase in population size of the species in an area. Prohibited invasive plants are currently not present or known to be present in Queensland and have therefore been excluded from any proposed criteria. A complete list of invasive plant species is listed in Schedule 2, Part 2 (Restricted matter – invasive biosecurity matter) of the *Biosecurity Act 2014*.

'Restricted' invasive plants will be assessed at the permanent rehabilitation monitoring sites and reference sites as part of all monitoring phases. The presence and percent cover of invasive plants, calculated as a percentage of the total vegetation cover, will be recorded at each site.

No seeding of leucaena is proposed at SSM. However, leucaena is an acceptable species within a cattle grazing PMLU, when leucaena stem density is managed as per the transitional EA rehabilitation acceptance criteria.

8.2.4.4 Grazing land suitability assessment

Land suitability class (Section 3.1.1.1) is assessed at Year 1 to determine the effectiveness of ameliorants or if further treatments are required. Ongoing land suitability assessments will be undertaken at the permanent

rehabilitation monitoring sites as part of monitoring events from Year 3. The land suitability will be rated class 1 to 5 as per the limitations in *Rehabilitated mined land suitability for beef cattle grazing in the Bowen Basin: Technical Paper 1* (Short, 2025)(Table 25).

8.2.4.5 Land condition

Grazing Land Management ABCD land condition, as described in the *Queensland Reef Protection Regulations Farming in Reef Catchments Grazing Guide* (DES, 2022a) (Table 68), will be assessed at the permanent cattle grazing rehabilitation monitoring sites from Year 3. This allows at least two seasons after seeding for pasture species to establish.

Land condition means "the capacity of grazing land to respond to rain and produce useful forage" (DES, 2022a). Indicators of land condition include "the proportion of organic ground cover, density of desirable perennial pasture species (i.e. grasses that are perennial, productive and palatable (3P) for cattle), extent of erosion and presence of weeds" (DES, 2022a). Land condition is classified into four broad categories under the framework based on indicators associated with pasture and soil condition (Table 68).

Table 68: Grazing Land Management ABCD Land Condition Framework (DES, 2022a)

Land Condition	Land Condition Features
Good – A	 A condition land has all of the following features: most land types in good condition will typically have at least 50% and often above 70% ground cover at the end of the dry season good density of perennial grasses dominated by those species considered to be 3P grasses for that land type, little bare ground (less than 30 % in most years) few weeds and no significant infestations good soil condition: no erosion, good surface condition
Fair – B	 B condition land has at least one or more of the following features, but otherwise is similar to A condition land: land types will typically have at least 50% ground cover and less than 70% in most years at the end of the dry season some decline of grasses that are 3P grasses, increase in other species (less favoured grasses, weeds) and/or bare ground (more than 30% but less than 50% in most years) some decline in soil condition, some signs of previous erosion and current susceptibility to erosion
Poor – C	 C condition land has one or more of the following features, but otherwise is similar to B condition land: land with poor or degraded condition will typically have less than 50% ground cover at the end of the dry season general decline of grasses that are 3P grasses, large amounts of less favoured species and/or bare ground (greater than 50% in most years) obvious signs of past erosion and/or current susceptibility to erosion is high
Degraded – D	D condition land has one or more of the following features: • generally less than 20% ground cover • general lack of any perennial grasses or forbs • severe erosion or scalding, resulting in hostile environment for plant growth • often no long-term ability to carry stock

8.2.4.6 Pasture condition

Pasture condition will be assessed at the permanent rehabilitation monitoring sites from Year 3. The density and coverage of 3P grasses is a key indicator of pasture condition (DES, 2022a). Pasture condition monitoring will be undertaken in accordance with the Stocktake GLM method (Department of Agriculture and Fisheries, 2021). The assessment includes an estimate of the percentage dry matter yield in kg/ha comprised of 3P pasture species versus the percentage dry matter yield in kg/ha of annual and undesirable grasses. Based on the monitoring data, pasture condition will be rated as per the condition indicators in Table 69.

Table 69: Pasture condition assessment table

	Condition indicators						
Condition rating	Prefer	red pasture species	Annual grass	Undesirable grasses and other weeds dry matter yield (%)			
	Dry matter yield (%)	Crown cover	dry matter yield (%)				
Excellent (A) - 1	>80	Dense and plants healthy	<20	<20			
Good (B) - 2	60 – 80	High to moderate density and some plants unhealthy	20 – 39	20 – 29			
Poor (C) - 3	10 – 59	Moderate to low density and some plants dead	40 – 70	30 – 80			
Very poor (D) - 4	<10	Sparse and many plants dead	>70	>80			

8.2.5 Grassland specific rehabilitation parameters

8.2.5.1 Groundcover

Groundcover will be assessed at the permanent rehabilitation monitoring sites as part of all monitoring events. Groundcover type is recorded as either live cover (with native and non-native species recorded), standing dry cover, organic litter (fine and coarse organic material, such as fallen leaves, twigs, branches and hay), rocks, or bare ground. The percentage of total groundcover (anything in contact with the soil surface) is calculated. The percentage of cover will be assessed within five 1m x 1m quadrats and averaged to give a value for the monitoring point.

8.2.5.2 Species richness

The number of grasses (exotic and native) for each survey plot will be recorded as part of all monitoring phases.

8.2.5.3 Invasive plants

'Restricted' invasive plants will be assessed at the permanent rehabilitation monitoring sites as part of all monitoring phases. The presence and percent cover of invasive plants, calculated as a percentage of the total vegetation cover, will be recorded at each site.

8.2.6 Woodland habitat specific rehabilitation parameters

The monitoring method for woodland habitat rehabilitation will be a modified *BioCondition – A condition* assessment framework for terrestrial biodiversity in Queensland assessment manual, version 2.2 (BioCondition Assessment Manual) (Eyre, et al., 2015). The applicable site-based attributes will be assessed and recorded.

The modified BioCondition Assessment Manual method will involve reducing the length of the transact when assessing some parameters (e.g. tree canopy and shrub layer cover).

The BioCondition Assessment Manual scoring tables will be used to determine the site-based attribute scores, whereby the 'benchmarks' in the scoring refers to the combined representative REs averaged benchmarks detailed in Table 70 (noting the representative REs are as per Section 1.2.8). The applicable site-based attributes have a maximum possible site score of 60.

Table 70: BioCondition benchmarks and scoring of site-based attributes for representative regional ecosystems

	Maximum	Benchmarks* for representative REs				Averaged benchmarks
Site-based attributes	Score for attributes	RE 11.4.2	RE 11.5.2	RE 11.5.3	RE 11.10.7	Combined REs
Recruitment of dominate canopy species (%)	5	100	100	100	100	100
Native plant species richness - trees (#)	5	4	5	6	6	5
Native plant species richness - shrubs (#)	5	5	10	6	6	7
Native plant species richness - grasses (#)	5	8	9	6	7	8
Native plant species richness - forbs/other (#)	5	7	16	10	9	11
Tree canopy height (m)	5	20	20	16	18	19
Tree canopy cover (%)	5	25	24	20	40	20**
Shrub layer cover (%)	5	13	7	3	8	8
Native perennial grass cover (%)	5	16	38	19	20	23
Litter cover (%)	5	30	25	20	53	32
Non-native plant cover (%)	10	0	0	0	0	0
Maximum Site Score	60					

^{*} Benchmarks for each applicable site-based attribute for each RE (State of Queensland, 2024)

RA10 and RA18 woodland habitat rehabilitation will be monitored for the site-based attributes listed in Table 70, however rehabilitation performance will be measured by species richness and tree canopy cover attributes.

8.2.6.1 Groundcover

Groundcover will be assessed at the permanent rehabilitation monitoring sites as part of all monitoring events. Groundcover type is recorded as either live cover (with native and non-native species recorded), standing dry cover, organic litter (fine and coarse organic material, such as fallen leaves, twigs, branches and hay), rocks, or bare ground. The percentage of total groundcover (anything in contact with the soil surface) is calculated. The percentage of cover will be assessed within five 1m x 1m quadrats and averaged to give a value for the monitoring point.

^{**} Tree canopy cover reduced to 20% as agreed with the administering authority.

8.2.6.2 Species richness

All woody species are recorded for each survey plot. Species richness will be assessed at the permanent rehabilitation monitoring sites as part of all monitoring phases. Species richness includes a full floristic assessment and count of trees, shrubs, grasses (native and exotic), and forbs and other ground species at each site.

8.2.6.3 Tree height

Tree height and height range will be assessed at the permanent rehabilitation monitoring sites from Year 3. Tree height (measured to the top of the highest leaves) refers to the median canopy height for trees in the canopy layer (Eyre, et al., 2015).

8.2.6.4 Tree canopy and shrub layer cover

Tree canopy cover and shrub layer cover will be assessed at the permanent rehabilitation monitoring sites from Year 3 using the line intercept method. The crown of each tree (single-stemmed woody plant greater than 2m tall) and the crown of each shrub (woody plant that is multi-stemmed from the base (or within 200mm from ground level) or if single stemmed, less than 2m tall) (Eyre, et al., 2015) is recorded and summed as a total tree canopy or shrub distance and converted to a percent cover at each monitoring site.

8.2.6.5 Recruitment

Recruitment will be assessed at the permanent rehabilitation monitoring sites from Year 3. Recruitment of canopy species is assessed by observing the proportion of the species in the ecological dominant layer regenerating (<5cm diameter at breast height) at each monitoring site.

8.2.6.6 Invasive plants

'Restricted' invasive plants will be assessed at the permanent rehabilitation monitoring sites and reference sites as part of all monitoring phases. The presence and percent cover of invasive plants, calculated as a percentage of the total vegetation cover, will be recorded at each site.

8.2.6.7 Tree stem count/basal area

Tree stem count provides another measure of species' abundance which helps describe the vegetation community. The tree stem count records the number of individual trees in a 50m x 10m plot by species. A tree that branches into two or more stems 30cm above the ground is counted as one individual (Neldner, 2022).

Basal area is recorded by species using a single sweep of a Bitterlich stick or similar with basal area factor of 1 from the centre of the plot (Neldner, 2022).

8.3 Watercourse monitoring

Watercourse monitoring will be conducted at SSM to assess the performance of diversions and rehabilitated watercourses disturbed by mining activities. The purpose of the monitoring is to assess the performance of the rehabilitated watercourses in achieving watercourse surface requirements (RM12) and achievement of postmining land use to a stable condition (RM15).

Watercourse monitoring will be undertaken in accordance with the IDC methodology which is outlined in the *Monitoring and Evaluation Program for Bowen Basin River Diversions* (ID&A, 2001). The IDC is a quantitative monitoring method used to measure the geomorphic and riparian vegetation condition of creek diversions; however, it can be utilised for both diverted and rehabilitated reaches of watercourses. For rehabilitated watercourse reaches which are not diversions (such as where culverts are removed), a modified IDC method, with a reduced number of monitoring points within each reach, is required due to the reduced impact area.

The SSM watercourse monitoring schedule is detailed in Table 71. The monitoring schedule indicates the IDC parameters measured over time from Year 1, Year 2, Year 5 and then 5 yearly thereafter.

The IDC methodology and monitoring consists of:

- Visual inspection of the diversion/rehabilitated watercourse and upstream and downstream reaches (i.e. reference sites)
- Assessment of geomorphic index and riparian vegetation index at nominated monitoring points within the diversion/rehabilitated watercourse, upstream and downstream reaches
- Determination of reach-averaged geomorphic index and riparian vegetation index and overall IDC scores for the diversion/rehabilitated watercourse, upstream and downstream reaches
- Comparison of the geomorphic index and riparian vegetation index and overall IDC scores for the diversion/rehabilitated watercourse reaches to the relative upstream and downstream reaches

In addition to the IDC index parameters, several other parameters will also be monitored as listed in Table 71.

Table 71: Watercourse PMLU monitoring schedule and measured rehabilitation parameters

Mo	Monitoring parameters			Monitoring schedule			
Parameter	Monitoring detail	Year 1	Year 2	Year 5	Year 10+ (5-yearly thereafter)		
Geomorphic index	c parameters						
Stream width	Width of high flow channel (m) Width of active channel (m) Width of low flow channel (m)	√	*	✓	✓		
Bank condition	Presence of erosion	✓	✓	✓	✓		
Piping of banks	Presence of piping on the banks	✓	✓	✓	✓		
Bed condition	Presence of aggradation or degradation within the channel bed	✓	✓	✓	✓		
Spoil piles	Proximity of spoil dumps in relation to the monitoring point	✓	✓	✓	√		
Recovery	Presence or absence of benches with/ without vegetation	✓	✓	✓	√		
Instream structures	Stability of each identified instream structure	✓	✓	✓	✓		
Riparian index par	rameters						
Riparian zone	Width of riparian zone (m)	✓	✓	✓	✓		
Structural intactness	Over-storey, understorey and ground cover (% density)	✓	✓	✓	✓		
Regeneration	Presence or absence of regeneration on banks	-	✓	✓	√		
Longitudinal continuity	Assess the gaps in the riparian vegetation corridor along the banks	✓	✓	✓	√		

Mo	Monitoring parameters			Monitoring schedule			
Parameter	Monitoring detail	Year 1	Year 2	Year 5	Year 10+ (5-yearly thereafter)		
Additional parame	ters						
Erosion	Assessment of sheet, rill, gully, tunnel and mass movement	√	✓	✓	✓		
Groundcover	Groundcover (%)	✓	✓	✓	✓		
Species richness - trees and shrubs	Native plant species richness for life- forms trees and shrubs	√	✓	✓	√		
Tree canopy cover	Native tree canopy cover (%)	-	-	✓	✓		
Tree canopy height	Tree median canopy height (m) for ecologically dominant layer or canopy layer	-	-	✓	~		
Recruitment of woody perennial species	Recruitment of woody perennial species in ecological dominant layer	-	-	✓	~		

8.4 Reference Sites

8.4.1 Cattle grazing reference sites

Cattle grazing reference sites have been established at the locations shown in Figure 22. The reference sites were monitored in 2024 and will continue to be monitored in accordance with the cattle grazing monitoring requirements outlined in Section 8.2. Existing cattle grazing reference site results have been summarised in Table 72. Additional or alternative cattle grazing reference sites may be established in the future. Land suitability classes for the cattle grazing reference sites were assessed against the land suitability framework (Short, 2025).

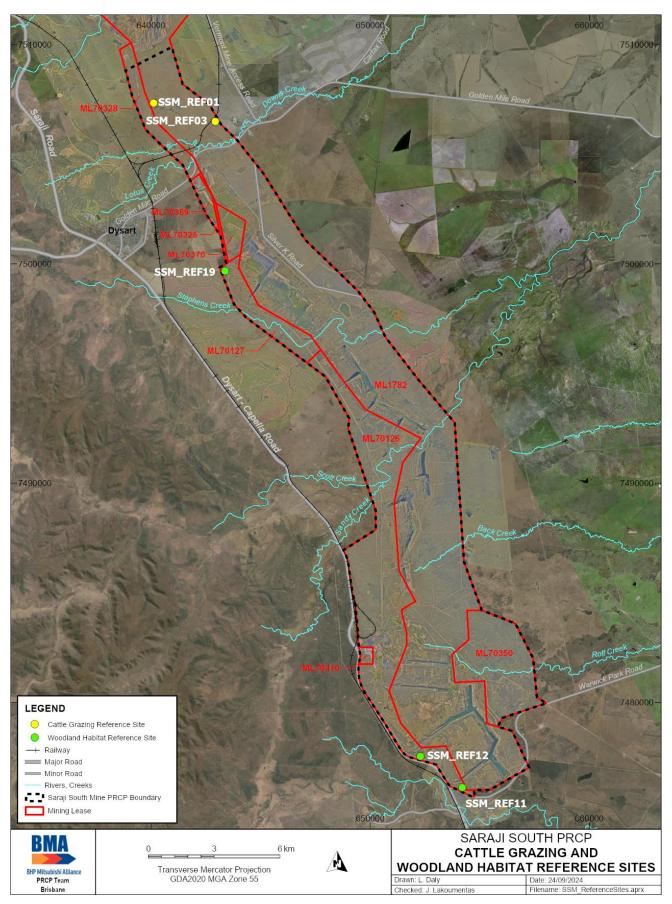


Figure 22: SSM cattle grazing and woodland habitat reference sites

Table 72: SSM cattle grazing reference sites

Site ID	SSM_REF01	SSM_REF03		
Image				
Monitoring year	2024	2024		
Coordinates (MGA2020 Zone 55)	640116 E, 7507340 N	642924 E, 7506500 N		
Mean slope (%)	<2	<2		
Total groundcover (%)	94	100		
Native grass Species	Heteropogon contortus (black spear grass) (3P), Bothriochloa bladhii (forest bluegrass) (3P)	Heteropogon contortus (black spear grass) (3P)		
Exotic grass Species	Setaria incrassata (purple pigeon grass*) (3P)	Bothriochloa pertusa (Indian couch*) (2P)		
Tree species	Casuarina cristata (belah), Terminalia oblongata (yellowwood)	Atalaya hemiglauca (whitewood)		
Shrub species	Capparis lasiantha, Carissa ovata (currant bush)	Acacia farnesiana (prickly mimosa bush*)		
Invasive plants	Not present	Parthenium hysterophorus (parthenium*)		
Dry matter yield (kg/ha)	3,500	2,000		
Land Condition	Good (A)	Poor (C)		

^{*}Exotic species

8.4.2 Woodland habitat reference sites

Woodland habitat reference sites have been established in areas of remnant vegetation undisturbed by mining as shown in Figure 22. The reference sites were monitored in 2023, and will continue to be monitored, in accordance with the woodland habitat monitoring requirements outlined in Section 8.2. A summary of existing woodland habitat reference site results on SSM have been provided in Table 73. Additional or alternative woodland habitat reference sites may be established in the future.

Table 73: SSM woodland habitat reference sites

Table 73. 35W Woodland Habitat reference sites			
Site ID	SSM_REF11	SSM_REF12	SSM_REF19
Image			
Monitoring year	2023	2023	2023
Coordinates (MGA2020 Zone 55)	654200 E, 7476115 N	652300 E, 7477532 N	643371 E, 7499674 N
Mean slope (%)	< 2	< 3	< 3
Regional ecosystem	11.4.2	11.5.3	11.4.2
Total groundcover (%)	100	91	89
Tree canopy cover (%)	34.6	66.6	17
Tree species	Eucalyptus melanophloia (silver leaved ironbark), Corymbia erythrophloia (red bloodwood), Corymbia tessellaris (Moreton Bay ash), Corymbia dallachiana (Dallachys gum)	Eucalyptus populnea (poplar box), Atalaya hemiglauca (whitewood), Bursaria incana (prickly pine), Acacia harpophylla (brigalow), Alphitonia excelsa (soap ash), Acacia excelsa (ironwood), Casuarina cristata (belah)	Eucalyptus orgadophila (mountain coolibah), Terminalia oblongata (yellowwood)
Evidence of recruitment	Yes	Yes	Yes
Shrub species	antalum lanceolatum (sandalwood), Carissa ovata (currant bush), Atalaya hemiglauca (whitewood), Psydrax oleifolia (psydrax), Citrus glauca (native lime bush), Acacia farnesiana (prickly mimosa bush*),	Psydrax oleifolia (psydrax), Owenia acidula (emu apple), Carissa ovata (currant bush), Dodonaea viscosa (hopbush), Alectryon diversifolius (holly bush), Eremophila mitchellii (false sandalwood), Flindersia	Alectryon oleifolius (boonaree), Carissa ovata (currant bush), Alectryon diversifolius (holly bush), Owenia acidula (emu apple)

Site ID	SSM_REF11	SSM_REF12	SSM_REF19
	Capparis arborea (brush caper berry), Capparis lasiantha, Eremophila mitchellii (false sandalwood)	dissosperma (scrub leopardwood), Capparis canescens, Breynia oblongifolia, Acacia salicina (sally wattle), Denhamia cunninghamii	
Grass species	Native Grasses: Heteropogon contortus (black spear grass), Themeda triandra (kangaroo grass) Exotic Grasses: Bothriochloa pertusa (Indian couch*), Cenchrus ciliaris (buffel grass*)	Native Grasses: Heteropogon contortus (black spear grass), Themeda triandra (kangaroo grass), Enneapogon pallidus (nine awn pale bottle washer), Bothriochloa decipiens (pitted bluegrass) Exotic Grasses: Cenchrus ciliaris (buffel grass*), Megathyrsus maximus var. pubiglumis (green panic*)	Native Grasses: Aristida ramosa (purple wiregrass), Bothriochloa bladhii (forest bluegrass) Exotic Grasses: Cenchrus ciliaris (buffel grass*), Bothriochloa pertusa (Indian couch*)
Invasive plants	Leucaena leucocephala (Leucaena*), Opuntia sp. (tree pear*)	Leucaena leucocephala (Leucaena*), Harrisia martinii (harrisia cactus*)	Opuntia sp. (tree pear*)

^{*}Exotic species

8.4.3 Watercourse reference sites

Watercourse reference sites have been established in the existing diversions associated with Lotus Creek, Downs Creek, Stephens Creek and Rolf Creek diversions as listed in Table 74 and shown in Figure 23. New reference sites will be established following construction and rehabilitation of future surface water diversions. Reference sites will be monitored in accordance with the watercourse monitoring requirements outlined in Section 8.3. Where revegetation is required in a natural watercourse (such as where culverts have been removed), a proportional number of reference sites utilising a modified IDC method (ID&A, 2001) will be established due to the reduced impact areas.

Table 74: SSM watercourse reference site locations

2177	D.C T		Location (MGA2020 Zone 55)		
Stream	Reference Type	Location	Easting	Northing	
Downs Creek	Downstream	DC - D1	643087	7505508	
Downs Creek	Downstream	DC - D2	643175	7505460	
Downs Creek	Downstream	DC - D3	643255	7505447	
Downs Creek	Downstream	DC - D4	643613	7505605	
Downs Creek	Upstream	DC - U1	641785	7505474	
Downs Creek	Upstream	DC - U2	642043	7505554	
Downs Creek	Upstream	DC - U3	641995	7505468	
Downs Creek	Upstream	DC - U4	642146	7505342	
Lotus Creek	Upstream	LC - U1	641180	7504389	
Lotus Creek	Upstream	LC - U2	641540	7504331	
Lotus Creek	Upstream	LC - U3	641732	7504431	
Lotus Creek	Upstream	LC - U4	641747	7504461	
Stephens Creek	Upstream	STC - U1	648771	7497402	
Stephens Creek	Upstream	STC - U2	648624	7497248	
Stephens Creek	Upstream	STC - U3	648544	7497129	
Stephens Creek	Upstream	STC - U4	648598	7496998	
Stephens Creek	Downstream	STC - D1	645437	7497149	
Stephens Creek	Downstream	STC - D2	645587	7497370	
Stephens Creek	Downstream	STC - D3	645829	7497282	
Stephens Creek	Downstream	STC - D4	645965	7497089	
Scott Creek	Downstream	SCC – HR - D1	650522	7490041	

			Location (MGA	A2020 Zone 55)
Stream	Reference Type	Location	Easting	Northing
Scott Creek	Downstream	SCC – HR - D2	650595	7490052
Scott Creek	Downstream	SCC – HR - D3	650649	7490058
Scott Creek	Upstream	SCC – HR - U1	650222	7489905
Scott Creek	Upstream	SCC – HR - U2	650271	7489930
Scott Creek	Upstream	SCC – HR - U3	650324	7489970
Scott Creek	Upstream	SCC – HR - U4	650367	7490007
Scott Creek	Crossing	SCC - HRCross2	650432	7490027
Sandy Creek	Downstream	SDC – HR - D1	650586	7489822
Sandy Creek	Downstream	SDC – HR - D2	650567	7489915
Sandy Creek	Upstream	SDC – HR - U1	650366	7489676
Sandy Creek	Upstream	SDC – HR - U2	650379	7489715
Sandy Creek	Upstream	SDC – HR - U3	650392	7489760
Sandy Creek	Upstream	SDC – HR - U4	650405	7489799
Sandy Creek	Crossing	SDC - HRCross1	650455	7489860
Rolf Creek	Downstream	RC - D1	654987	7481312
Rolf Creek	Downstream	RC - D2	655178	7481530
Rolf Creek	Downstream	RC - D3	655417	7481559
Rolf Creek	Downstream	RC - D4	655616	7481415

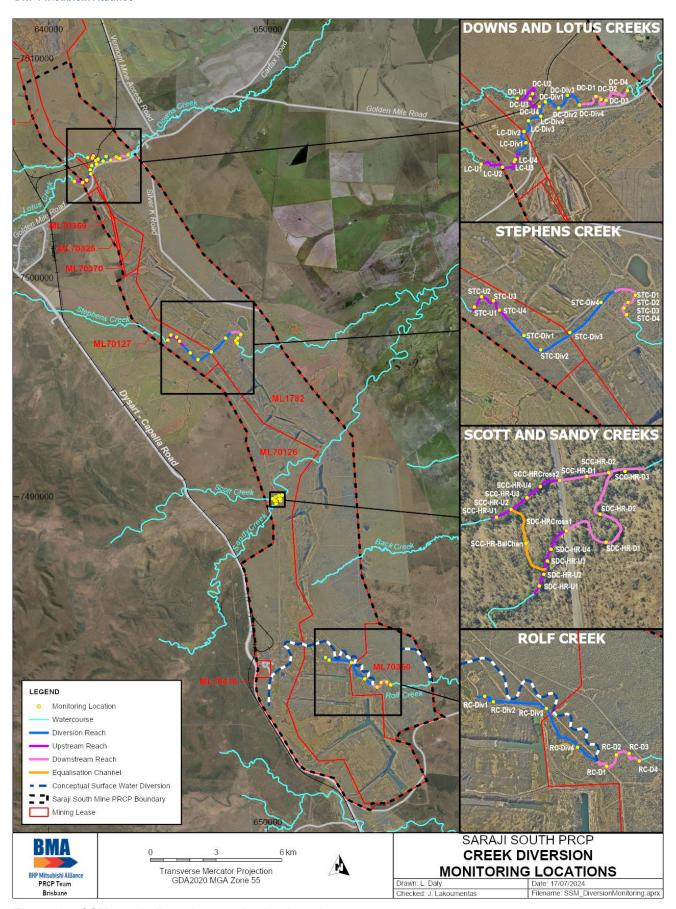


Figure 23: SSM creek diversion monitoring locations

8.5 Surface water monitoring

Surface water runoff monitoring will be undertaken for:

- Representative areas of rehabilitation as part of surface requirements (RM10, RM11, RM19) and to demonstrate achievement of PMLU to a stable condition (RM13, RM14 and RM20) within areas of rehabilitation commenced post approval of this transitional PRCP; and
- Watercourse locations included in Table 75, commencing by 2080.

Water quality monitoring will be undertaken in accordance with the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy 2009* (DES, 2018).

The surface water monitoring data currently held for the site has been collected for a variety of purposes, for which different sampling methodologies and data quality objectives were applied, and therefore, this data is not suitable for the development of site-specific criteria. Also, as per ANZG (2018), the default guideline values are for generic applications and may not be representative of local conditions and therefore are not suitable for use as water quality limits for a specific mine site. The execution of scopes for the collection of appropriate data sets to support the development of site-specific criteria have not formed part of the EA requirements and could not be completed within the transitional PRCP notice timeframes.

Water quality limits should be site-specific and developed through appropriate sampling analytical and quality plans that include data quality objective processes aligned with the intended use of the data. BMA have requested the transitional PRCPs be conditioned to allow the appropriate development of site-specific water quality limits. As the watercourses at SSM are highly ephemeral and do not support baseflows, the establishment of the site-specific water quality limits will be based on the ANZECC guidance for temporary waters (Smith, 2020).

Due to the variability and availability of the stream flows in the target ephemeral watercourses, there is some uncertainty around the timing for completing the establishment of site-specific water quality limits. Site-specific closure water quality limits should be developed prior to commencement of closure focused downstream watercourse monitoring program.

8.5.1 Rehabilitation area surface water monitoring

Representative areas of rehabilitation will be selected by BMA to conduct surface water monitoring. Representative is defined in the EA as "a sample set that covers the variance in monitoring or other data due to either natural changes or operational phases of the mining activities". A range of factors should be considered including: timing of rehabilitation; PMLU; slope; underlying material type; and surface treatment. The objective of the rehabilitation area surface water sampling is to demonstrate that rehabilitation areas are progressing towards or have achieved a stable condition. The selected rehabilitation areas will be designed and constructed to allow the capture of surface water flows for sampling from the rehabilitated area's surface, without significant influence from surrounding operational areas. Depending on the nature of the rehabilitation area, the method of surface water collection may vary from area to area.

Samples from the selected rehabilitation areas will be collected and analysed for parameters transitioned from Table E1 of the EA and include pH, EC and turbidity, when suitable runoff occurs and when safe to do so. Rehabilitation area surface water runoff will be collected from rehabilitation areas designed and constructed post approval of this transitional PRCP.

8.5.2 Receiving environment surface water monitoring

The collection and analysis of surface water samples from watercourses (Table 75 and Figure 24) will commence by 2080. The objective of the watercourse samples is to facilitate relinquishment of the site through confirming the rehabilitated site is not causing environmental harm through surface water discharges and has generated a stable landform suitable to support the PMLUs.

Surface water quality will be monitored at least once per month when flows at the downstream gauging station record >1m³/s (when safe to collect samples). Due to the ephemeral nature of the watercourses that cross SSM, there are no baseflows to allow for collection of samples on a predetermined schedule, and therefore sampling will be undertaken following rainfall events that generate suitable flows.

The water quality within the watercourses, within the five-year period immediately prior to surrender, will be assessed via the following process:

- 1. Downstream monitoring results will be compared to the site-specific surface water quality limits (once developed). Where downstream monitoring results are below the surface quality limits, no further actions will be required.
- 2. Where exceedances of the surface water quality limits are identified at the downstream sample locations, the downstream results will be compared to the upstream results for that monitoring round. Where downstream results are equal to or less than the upstream results, no further actions will be required.
- 3. Where downstream results are above both the specified water quality limits and the upstream results, an AQP will be engaged to assess the risk to achieving a stable condition.
 - a. Where risks are determined to be low, no further action will be taken.
 - b. Where a risk greater than low is identified by the AQP, an assessment of potential environmental harm and any changes or rectification actions to rehabilitation activities will be assessed and implemented.
 - c. Where 3(b) is triggered more than three times over five consecutive years prior to surrender, the five-year monitoring period is reset. Where environmental harm is identified and/or rectification actions to rehabilitation activities are required, at least five years of further surface water monitoring will be undertaken.

The results of assessments completed by the AQP will be provided to the administering authority within six months of receiving the sampling results.

The surface water monitoring locations may be amended as required to account for changes to upstream land uses/stream dynamics or to improve the effectiveness of the monitoring program.

Table 75: Surface water monitoring locations

Sample location ID	Approximate (MGA2020		Description				
	Easting	Northing					
Upstream monitoring	Upstream monitoring locations						
SSM PRCP SW01	640805	7505239	Downs Creek – Upstream of the haul road culvert within ML70328.				
SSM PRCP SW02	641514	7504376	Lotus Creek – Upstream of haul road adjacent to ML70328 boundary				
SSM PRCP SW04	645897	7497234	Stephens Creek – Upstream, adjacent to haul road on ML70127				
SSM PRCP SW06	649918	7489892	Scott Creek – Upstream, existing monitoring point UMP1 on ML70126				
Downstream monitor	ing locations						
SSM PRCP SW03	644049	7505860	Downs Creek – Adjacent to Golden Mile Road and downstream of ML1782				
SSM PRCP SW05	650364	7496878	Stephens Creek – Downstream, existing monitoring point DMP2 on ML1782				
SSM PRCP SW07	653579	7493065	Scott Creek – Downstream ML1782 boundary adjacent to overhead power easement.				
SSM PRCP SW08	657479	7481525	Rolf Creek – Downstream ML70350 boundary				

Figure 24: SSM rehabilitation surface water monitoring locations

8.6 Groundwater monitoring

In line with the *Guideline for Progressive certification for resource activities* (DES, 2022b), deep drainage water quality will be "addressed holistically for a site at surrender". The objective and acceptance criteria for groundwater is not considered relevant to progressive rehabilitation of discrete packages of rehabilitated land due to the scale and nature of groundwater aquifers.

8.6.1 Groundwater quality

The groundwater monitoring data currently held for the site has been collected for a variety of purposes, for which different sampling methodologies and data quality objectives were applied, and therefore, this data is not suitable for the development of site-specific criteria. Also, as per ANZG (2018), the default guideline values are for generic applications and may not be representative of local conditions and therefore are not suitable for use as water quality limits. The execution of scopes for the installation of monitoring infrastructure and collection of appropriate data sets to support the development of site-specific criteria, could not be completed within the transitional PRCP notice timeframes.

Water quality limits should be site-specific and developed through appropriate sampling analytical and quality plans that include data quality objective processes aligned with the intended use of the data. BMA have requested the transitional PRCPs are conditioned to allow the appropriate development of site-specific water quality limits.

To allow sufficient time to install required monitoring infrastructure and collect a reasonable data set of the required quality to support the development of the required site-specific criteria, the development of the criteria is expected to take in the order of 10 years. Water quality monitoring will be undertaken in accordance with the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy 2009* (DES, 2018).

8.6.2 Groundwater levels

Monitoring of groundwater levels will focus on the relationship between the Permian groundwater level recovery and the residual void lake levels. Groundwater level/gradient trends over time will be assessed against the more dynamic pit lake levels with the data incorporated into the predictive numerical groundwater models. The numerical groundwater models will be used to confirm the residual voids are progressing to a stabilised state, where collectively they will act as a site wide on-going sink for the Permian hosted groundwater and thus minimising the potential for an unacceptable risk of environmental harm off-tenure.

Due to the timeframes involved for the stabilisation of the void lakes and groundwater levels surrounding the mining voids, the intention of the groundwater level monitoring is to show progress towards development of long-term sinks and not to confirm the attainment of long-term sinks. Demonstrating the progress towards development of long-term sinks is to be done through assessment of trends and comparison to groundwater and void lake water balance model predictions by an AQP. The groundwater model and water balance model will be recalibrated and predictions rerun at least 5-yearly commencing from 2050. These updates will incorporate up to date information and confirm the predictions for the residual voids.

8.6.3 Groundwater monitoring schedule

During operations, groundwater monitoring will continue as per the applicable EA conditions.

Following installation of rehabilitation groundwater monitoring bores by 2050, groundwater will be monitored six monthly and compared against the site-specific groundwater quality limits.

8.6.4 Groundwater monitoring locations

Groundwater monitoring to support the assessment of closure conditions will be undertaken on bores that provide a geographical distribution across SSM and coverage of the key hydrogeological units. The groundwater monitoring bore network to assess closure conditions will include selected bores existing at closure and bores installed specifically to close data gaps and to replace bores that may have been lost due to mining disturbances or otherwise are not operational. The groundwater monitoring network to be utilised for assessment of rehabilitation are provided in Table 76 and shown in Figure 25.

The rehabilitation groundwater monitoring bore network may require maintenance or adjustment throughout the monitoring period. Where bores become inoperable or are not producing the required data due to damage to bores, changes in water levels, changes to the catchment or other site-specific circumstances, replacement bores or additional bores may be installed as required.

Table 76: Groundwater monitoring locations

Hydro- geologic unit	Sample location ID	Appro coord (MGA2020		Description	Ground- water quality	Ground- water level
unit		Easting	Northing		quality	levei
Tertiary – Basalt	NPMMB02_02	649871	7489948	Located adjacent to Scott Creek in the proximity of the western EA boundary	√	~
Tertiary/ Alluvial	MB20NPM05A	653474	7493065	Located adjacent to Scott Creek in the proximity of the eastern EA boundary	√	√
Permian	MB20NPM06P _R01	653471	7493065	Located adjacent to Scott Creek in the proximity of the eastern EA boundary	√	√
Permian – Moranbah Coal Measures D Seam	MBR02A	656146	7478205	To the east of the Roper residual voids and west of the EA boundary	√	✓
Tertiary	MBR02B	656147	7478199	To the east of the Roper residual voids and west of the EA boundary	√	✓
Tertiary	NPMMB08_01	650989	7483200	Located to the north of the Roper voids in the proximity of the MIA	√	√
Permian – Interburden	NPMMB03_01	650331	7496840	Adjacent to Stephens Creek in the proximity of the eastern EA boundary	✓	✓
Permian – Interburden	NPMMB02_01	649882	7489942	Adjacent to Scott Creek in the proximity of the western EA boundary	√	✓
Permian – Interburden	MB20NPM07A	656941	7479627	To the east of the Roper residual voids and to the south of East Pit residual voids	~	~
Permian – Moranbah Coal Measures H Seam	MB20NPM02P	643393	7505500	Adjacent to Downs Creek and to the north of Lotus/Campbell residual voids.	√	✓

Hydro- geologic unit	Sample location ID	Approx coordi (MGA2020	nates	Description	Ground- water	Ground- water level
unit		Easting	Northing		quality	ievei
Permian – Moranbah Coal Measures H Seam	MB20NPM04P	650340	7496840	Adjacent to Stephens Creek to the north of Gilbert Pit	~	✓
Permian – Moranbah Coal Measures P Seam	MB20NPM08P	656954	7479627	To the east of the Roper residual voids and to the south of East Pit residual voids	~	✓
Tertiary	SSM PRCP New Bore 01	650427	7480896	To the west of the Roper spoil Dumps in the proximity of the Murphy Dams to the south of the MIA	~	✓
Permian – Back Creek Group	SSM PRCP New Bore 02	650437	7480917	To the west of the Roper spoil Dumps in the proximity of the Murphy Dams to the south of the MIA	~	*
Permian – Moranbah Coal Measures H/D Seam	SSM PRCP New Bore 03	654090	7482190	Located between the Roper 1 residual void and East Pit residual void	~	~
Permian – Moranbah Coal Measures H/D Seam	SSM PRCP New Bore 04	656780	7477042	To the east of Roper 4 in the south-eastern corner of the EA area	✓	✓
Permian – Moranbah Coal Measures H/D Seam	SSM PRCP New Bore 05	645214	7501099	To the east of the Lotus Campbell residual void	√	~
Permian – Moranbah Coal Measures H/D Seam	SSM PRCP New Bore 06	653344	7490180	To the east of Price Pit and to the north of Leichardt residual void	√	√

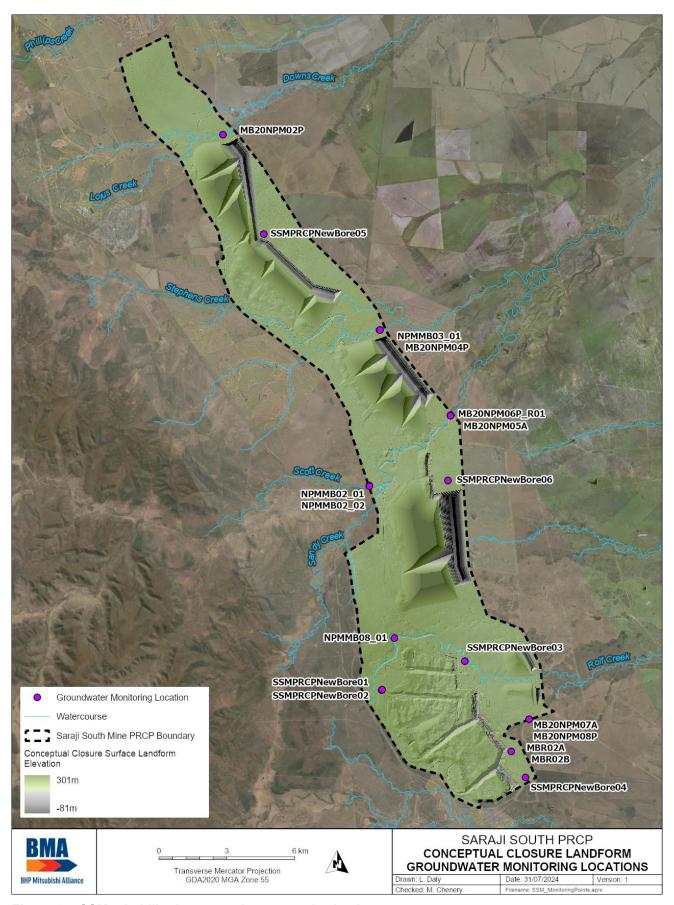


Figure 25: SSM rehabilitation groundwater monitoring bores

8.7 NUMA milestone monitoring

Management milestone (MM) monitoring will be undertaken at SSM by an AQP (as per condition A5 of the EA) to demonstrate achievement of the MMs, as they relate to achieving sufficient improvement of the NUMA extents. The MMs and associated milestone criteria for SSM are detailed in Section 10.5. A combination of monitoring, reporting and data analysis approaches will be used to demonstrate the achievement of the MMs prior to site relinquishment as detailed in Table 77.

Table 77: Management milestones with relevant reporting requirements

ММ	Management milestone	Reporting requirements
MM1	Achievement of structural	Final groundwater model and assessment
	stability	Final flood model and assessment
		Final geotechnical assessment
		Final void design
		Survey/LiDAR of landform
		Analysis of final landform against design
MM2	Achievement of surface requirements	Document visual inspections of safety bund, fencing and signage
MM3	Achievement of sufficient	Groundwater monitoring (Section 8.6)
	improvement	Residual voids water quality and level (Section 6.3.5)
		Certification that residual voids:
		 Are safe to humans and livestock
		 Are immune from flooding
		 High-wall landforms are constructed to final design
		 Safety infrastructure is installed as per design
		 Will not present an unacceptable risk of environmental harm outside of the tenure
		 Will not impact on the stability of any adjacent rehabilitation areas, or their ability to sustain their PMLU
		Document visual inspections of safety bund, fencing and signage

8.8 Achievement schedule

8.8.1 PMLUs

The timing of the rehabilitation milestones specific to achievement of surface requirements and achievement of cattle grazing, grassland, woodland habitat and watercourse PMLUs are listed in Table 78. These timeframes have regard to the risks presented in Section 7.

Achievement of surface requirements for cattle grazing (RM10) and grassland (RM19) is proposed within a 10-year timeframe from revegetation and a further five years for achievement of PMLU to a stable condition for cattle grazing (RM13 and RM17) and grassland (RM20). There are a number of factors which can influence the successful establishment of grasses on post-mined land including landform, soil management and amelioration, species selection, seeding rates and seeding timing, plus rainfall. This will allow for sufficient time to

demonstrate the ongoing sustainability of the PMLU for cattle grazing through rehabilitation monitoring data associated with land condition and pastures.

Achievement of surface requirements for woodland habitat (RM11) and watercourse (RM12) are proposed within a 10-year timeframe from revegetation. A further 10 years is allowed for establishment and successional processes and natural recruitment to occur, prior to achievement of the PMLUs to a stable condition (RM14, RM15 and RM18).

Table 78: Time for achievement of surface requirements and PMLUs rehabilitation milestones

RM	Rehabilitation milestone	Milestone achievement time after revegetation (in PRCP schedule)
RM10	Achievement of surface requirements (cattle grazing)	10-years
RM11	Achievement of surface requirements (woodland habitat)	10-years
RM12	Achievement of surface requirements (watercourse)	10-years
RM19	Achievement of surface requirements (grassland)	10-years
RM13	Achievement of post-mining land use to a stable condition (cattle grazing – RA3, RA13, RA14)	Up to 15-years
RM14	Achievement of post-mining land use to a stable condition (woodland habitat – RA1, RA4, RA12, RA15)	Up to 20-years
RM15	Achievement of post-mining land use to a stable condition (watercourse – RA2)	Up to 20-years
RM17	Achievement of post-mining land use to a stable condition (cattle grazing - existing rehabilitation – RA7, RA17)	Up to 15-years
RM18	Achievement of post-mining land use to a stable condition (woodland habitat – existing rehabilitation – RA10, RA18)	Up to 20-years
RM20	Achievement of post-mining land use to a stable condition (grassland – RA16)	Up to 15-years

8.8.2 **NUMAs**

The timing of the management milestones specific to achievement of sufficient improvement (MM3) is listed in Table 79.

Table 79: Timeline for achievement of sufficient improvement for NUMA management milestones

ММ	Management milestone	Milestone achievement timeline (in PRCP schedule)
ммз	Achievement of sufficient improvement	Aligned with achievement of neighbouring PMLUs (RM13, RM14, RM15 or RM20) for maximum monitoring period to demonstrate minimising environmental harm

8.9 Data analysis and reporting

Rehabilitation monitoring data will be collected and analysed by an AQP and assessed against the milestone criteria. The data will be analysed to identify changes and trends, as well as map the trajectory of rehabilitation to identify whether it is on track to achieve the milestone criteria or requires corrective actions or maintenance.

The rehabilitation data will be stored and processed within internal geospatial and document management systems.

8.10 Maintenance

Maintenance will be implemented when monitoring identifies issues with the rehabilitation, or when milestone criteria are not being met. In order to select the most appropriate corrective actions, rehabilitation monitoring data will be analysed to identify the likely cause(s). Required maintenance/corrective actions will be included in rehabilitation budgets for completion. Records of maintenance activities will be retained by BMA.

To support ongoing operations, exploration and minor ancillary activities may be required in areas not within a RA in some circumstances (Section 1.4.2). Rehabilitation of these activities will be managed as part of maintenance works and executed as soon as practicable and within at least six months of the completion of the exploration or minor disturbance. Maintenance works may include removing infrastructure, reshaping the area, re-spreading stripped topsoil, applying seed mix aligned to the PMLU, weed control or managing erosion.

8.11 Quality assurance and quality control

The QA/QC process to be followed as part of SSM ongoing rehabilitation monitoring is illustrated in Figure 26. The process provides for initial execution of the rehabilitation in accordance with the rehabilitation plan developed for each area prior to execution, followed by verification of the execution against the rehabilitation plan. Based on the verification outcomes, allowance is made for implementation of corrective actions, as needed. All rehabilitated areas then undergo rehabilitation monitoring; and subsequent execution of maintenance actions identified through the monitoring (Section 8) and improvements to the rehabilitation methodology. This process allows for a repetitive execution-verification-corrective action-monitoring QA/QC approach, to ensure rehabilitation areas progress on a trajectory towards achievement of milestone criteria and eventual certification.

Figure 26: Rehabilitation monitoring QA/QC process

9 REFERENCES

- ACARP. (2014). Criteria for functioning river landscape units in mining and post mining landscapes, ACARP Project C20017. Alluvium Consulting.
- AGE. (2004). Groundwater Regime and Monitoring Study, Norwich Park Mine. Prepared for Billiton Mitsubishi Alliance Coal Operations. Project G1222. Australasian Groundwater and Environmental Consultants.
- ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra: Australian and New Zealand Governments and Australian State and Territory Governments.
- Aquaterra. (2001). Groundwater Flow Modelling Guideline. Murray-Darling Basin Commission.
- BAAM. (2020). *Ecological Baseline Assessment, Saraji Soft Restart Project.* Cleveland: Biodiversity Assessment and Management Pty Ltd.
- BAAM. (2021). *Ecological Baseline Assessment, Saraji South Mine*. Cleveland: Biodiversity Assessment and Management Pty Ltd.
- Barnett, B., Townley, L., Post, V., Evans, R. H., Richardson, S., Werner, A., . . . Boronkay, A. (2012).

 Australian Groundwater Modelling Guidelines Waterlines Report Series No. 82. Commonwealth of Australia.
- BHP. (2024). Saraji South Mine PRCP Environmental Geochemical Characterisation and Risk Assessment of Mineral Waste.
- BMA. (2006). Norwich Park East Pit Project Environmental Impact Statement. BMA.
- BMA. (2023). BMA Climate Change Adaptation in Mine Water Planning and Hydrologic Assessments Guideline.
- BoM. (2017). *Groundwater Dependent Ecosystems Atlas*. Retrieved from http://www.bom.gov.au/water/groundwater/gde/map.shtml
- BOM. (2023). Climate Data Online. Retrieved from http://www.bom.gov.au/climate/data/index.shtml
- DEHP. (2011). Environmental Protection (Water) Policy 2009 Isaac River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including all water of the Isaac river Sub-basin (including Connors River). Brisbane: State of Queensland.
- DEHP. (2016). Eligibility criteria and standard conditions for exploration and mineral development projects Version 2. Brisbane: State of Queensland.
- Department of Agriculture and Fisheries. (2021). *Introducing the Stocktake GLM App*. Retrieved from Stocktake: https://stocktakeglm.com.au/
- DERM. (2011). Salinity management handbook. Second edition. Brisbane, QLD, Queensland Government.
- DES. (2018). *Monitoring and Sampling Manual: Environmental Protection (Water) Policy.* Brisbane: Department of Environment and Science Government.
- DES. (2022a). Queensland Reef Quality Program Reef Protection Regulations Farming in Reef Catchments Grazing Guide Version 2. Brisbane: Office of the Great Barrier Reef, Environmental Policy and Programs.
- DES. (2022b). *Progressive certification for resource activities*. Retrieved from https://environment.des.qld.gov.au/__data/assets/pdf_file/0025/259081/rs-gl-progressive-certification.pdf
- DES. (2023a, April 4). *Environmental reports online*. Retrieved from WildNet records—Conservation significant species list: https://www.qld.gov.au/environment/management/environmental/environmental-reports-online
- DES. (2023b, April 4). Regional ecosystem mapping. Retrieved from https://www.qld.gov.au/environment/pollution/management/environmental-reports-online
- DES. (2023c, April 4). *Matter of state significance (MSES)*. Retrieved from https://www.qld.gov.au/environment/pollution/management/environmental-reports-online

- DES. (2023d, April 4). *Maps of environmentally sensitive areas*. Retrieved from https://environment.des.qld.gov.au/management/maps-of-environmentally-sensitive-areas
- DESI. (2024a). Community consultation for Progressive Rehabilitation and Closure Plan ESR/2019/5101.

 Brisbane: Department of Environment, Science and Innovation.
- DESI. (2024b). Statutory guideline Progressive rehabilitation and closure plans (PRC plans). Brisbane.
- DIIS. (2016). Leading Practice Sustainable Development Program for the Mining Industry Mine Rehabilitation. Canberra: Department of Industry, Innovation and Science.
- DLGP. (2012). *Mackay, Isaac and Whitsunday Regional Plan*. Brisbane: Depatment of State Development, Infrastructure, Local Government and Planning.
- DNRME. (2018). Queensland Geology Detailed Surface Mapping.
- DNRME. (2019). Guideline: Works that interfere with water in a watercourse for a resource activity watercourse diversions authorised under the Water Act 2000, OSW/2019/4599, Version 2.00.
- DSITI & DNRM. (2015). *Guidelines for Agricultural Land Evaluation in Queensland (2nd edn)*. Brisbane, Queensland: Queensland Government.
- EcoServe and LAMR. (2005). Biodiversity and Threatened Species Action Plan, BMA Norwich Park Mine. Brisbane: EcoServe.
- Emmerton, B., Erskine, P., Baumgartl, T., & Burgess, J. (2016a). *Re-establishment of species diversity after rehabilitation of open cut mines in the Bowen Basin mining precinct of Queensland.* Brisbane.
- Emmerton, B., Erskine, P., Baumgartl, T., & Burgess, J. (2016b). Woody species re-establishment on rehabilitated open cut mines in the Bowen Basin mining precinct of Queensland March. Brisbane.
- Engeny. (2024). PRCP Concept Design Report Rolf Creek East. Brisbane .
- Eyre, T., Kelly, A., Neldner, V., Wilson, B., Ferguson, D., Laidlaw, M., & Franks, A. (2015). *BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland. Assessment Manual. Version 2.2.* Brisbane: Queensland Herbarium, Department of Science, Information Technology, Innovation and Arts.
- FAO. (2013). *Chapter 2 Saline waters as resources*. Food and Agriculture Organisation of the United Nations. Retrieved from http://www.fao.org/3/t0667e/t0667e05.htm
- Future Beef. (2022). *Legume BMP in the Brigalow Belt*. Retrieved from https://futurebeef.com.au/resources/legume-bmp-in-the-brigalow-belt/
- Gauge. (2023). Receiving Environment Monitoring Program (REMP) Annual Report July 2021 June 2022, Saraji South Mine (Formerly Norwich Park Mine).
- ICMM. (2025). Integrated Mine Closure: Good Practice Guide 3rd Edition. London.
- ID&A. (2001). Monitoring and Evaluation Program for Bowen Basin River Diversions. Australian Coal Association Research Program (ACARP) Project C9068. Melbourne, Australia.
- IESC. (2018). Information Guidelines Explanatory Note: Uncertainty Analysis Guidance for Groundwater Modelling within a Risk Management Framework. Commonwealth of Australia.
- INAP. (2009). Global Acid Rock Drainage Guide (GARD Guide). International Network on Acid Prevention.
- Isaac Regional Council. (2021). *Isaac Regional Planning Scheme*. Retrieved from https://www.isaac.qld.gov.au/planning-scheme-documents
- Kerswell A, K. T. (2020). Habitat descriptions for 12 threatened species, specific to central Queensland.
- Landloch. (2023a). South Saraji Mine Soil and Land Suitability Assessment. Toowoomba.
- Landloch. (2023b). South Saraji Mine Material Characterisation Study. Toowoomba.
- Landloch. (2024). Erosion and Landform Evolution Simulations to Support Waste Landform Design: Sarai South Mine.
- National Committee on Soil and Terrain. (2024). *Australian soil and land survey field handbook. 4th edn.* Melbourne: CSIRO Publishing.

- Neldner, V. W. (2022). *Methodology for survey and mapping of regional ecosystems and vegetation communities in Queensland. Version 6.0.* Brisbane: Queensland Herbarium.
- OQMRC. (2023). *Native ecosystem rehabilitation in Queensland Implications for leading practice*. Queensland Government: Office of the Queensland Mine Rehabilitation Commissioner.
- Queensland Government. (2024, May 6). Retrieved from qimagery information.qld.gov.au.
- Queensland Herbarium. (2018). *Regional Ecosystem Technical Decriptions Brigalow Belt.* Brisbane: Department of Environment and Science.
- Short. (2018). A Rule-Set for Land Suitability Assessment of Sustainable Beef Cattle Grazing on Land Rehabilitated After Open-Cut Coal Mining in the Bowen Basin, Queensland.
- Short. (2025). Rehabilitated mined land suitability for beef cattle grazing in the Bowen Basin: Technical Paper.

 Office of the Queensland Mine Rehabilitation Commissioner.
- SLR. (2024a). Norwich Park Mine Transitional PRCP Voids in Flood Plain Assessment.
- SLR. (2024b). Saraji South Mine Transitional PRC Plan Hydrogeology Assessment.
- SLR. (2024c). Saraji South Mine Groundwater Modelling Technical Report.
- Smith, R. B. (2020). Assessing and managing water quality in temporary water. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra: Australian and New Zealand Governments and Australian State and Territory Governments.
- Spain, C., Nuske, S., & Gagen, E. (2023). *Evaluating methods for assessing native ecosystem mine rehabilitation success.* Brisbane: Office of the Queensland Mine Rehabilitation Commissioner, Queensland Government.
- Spain, C., Nuske, S., Gagen, E., & Purtill, J. (2023). *Evaluating native ecosystem rehabilitation options in Queensland*. Brisbane: Office of the Queensland Mine Rehabilitation Commissioner, Queensland Government.
- Spargo, A., & Doley, D. (2016). Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment. *Journal of Environmental Management*, 182, 342-350.
- State of Queensland. (2024, May 29). *BioCondition benchmarks*. Retrieved from https://www.qld.gov.au/environment/plants-animals/biodiversity/benchmarks
- Vegetation Matters. (2014). *North Burnett Riparian Revegetation Guidelines Burnett River Queensland.*Burnett Catchment Care Association.
- WBM. (2003). Terrestrial Ecological Assessment of Lands within the proposed East Pit Extension Norwich Park Coal Mine. Brisbane: WBM Oceanics Australia.
- WBM. (2004). *Norwich Park Mine Baseline Flora and Fauna Habitat Assessment*. Brisbane: WBM Oceanics Australia.
- Whitehaven Coal. (2022). Winchester South Project Environmental Impact Statement Additional Information Enclosure 1 Assessment of Final Landform Alternatives. Brisbane.
- Williams, D. (2015). Bulking and Subsequent Self-Weight and Saturation Settlements, and Geotechnical Stability, of Deep Coal Mine Spoil Piles. (ACARP C19022).
- Wilson, P., & Taylor, P. (2012). *Land Zones of Queensland*. Brisbane: Queensland Herbarium, Queensland Department of Science, Information Technology, Innovation and the Arts.
- WMS. (2024). Rehabilitation Flood Modelling, Saraji South Mine (Norwich Park). WMS.
- WRM. (2020). Flood Study and Levee Assessment Norwich Park Mine.
- WSP. (2024). Saraji South Mine Void Closure Plan.

B: PRCP SCHEDULE 10 PRCP SCHEDULE

Legislative Requirement

In accordance with section 126D(1) of the EP Act, the PRCP Schedule in the PRC Plan must:

- a) describe the area of each resource tenure either a post-mining land use or non-use management area, and
- b) for each post-mining land use state:
 - i. each rehabilitation milestone required to achieve a stable condition, and
 - ii. when each rehabilitation milestone is to be achieved, and
- c) for each non-use management area state:
 - i. each management milestone, and
 - ii. when each management milestone is to be achieved, and
- d) include maps showing the land mentioned in (a), (b) and (c).

PRCP Guideline (Section 4)

The development and implementation of the PRCP schedule is an essential element of a PRC plan. The administering authority approves a PRCP schedule and applicants are required to comply with the conditions and milestones of the schedule. A PRCP schedule must include:

- either a PMLU or NUMA for all land within the relevant resource tenures, including undisturbed land
- identification of when land becomes available for rehabilitation or improvement
- rehabilitation or management milestones to achieve the PMLU or NUMA outcomes
- milestone criteria that demonstrate when each milestone has been completed
- completion dates for each milestone to be achieved
- any conditions considered necessary or desirable.

Applicants are required to develop and submit a proposed PRC plan when they make a site-specific application for an EA or receive a notice from the administering authority requiring the submission of a proposed PRC plan. The administering authority will assess the proposed PRCP schedule in conjunction with the rehabilitation planning part (see section 3 of this guideline) and decide whether to approve or refuse the PRCP schedule, amend the proposed PRCP schedule as necessary or impose milestones and conditions as necessary and impose conditions as necessary or desirable (see section 2.5 of this guideline). Once approved by the administering authority, the PRCP schedule becomes a legally binding and enforceable instrument with which the holder must comply.

10.1 Final site design

The SSM final site design in provided in Figure 27.

10.2 Reference map

The SSM reference map is provided in Figure 28.

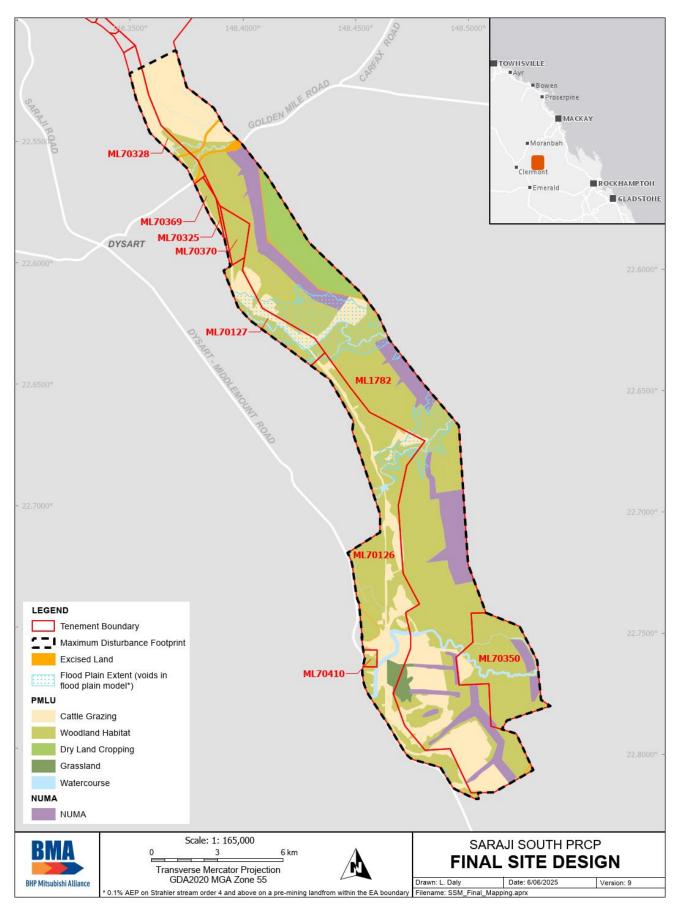


Figure 27: SSM final site design

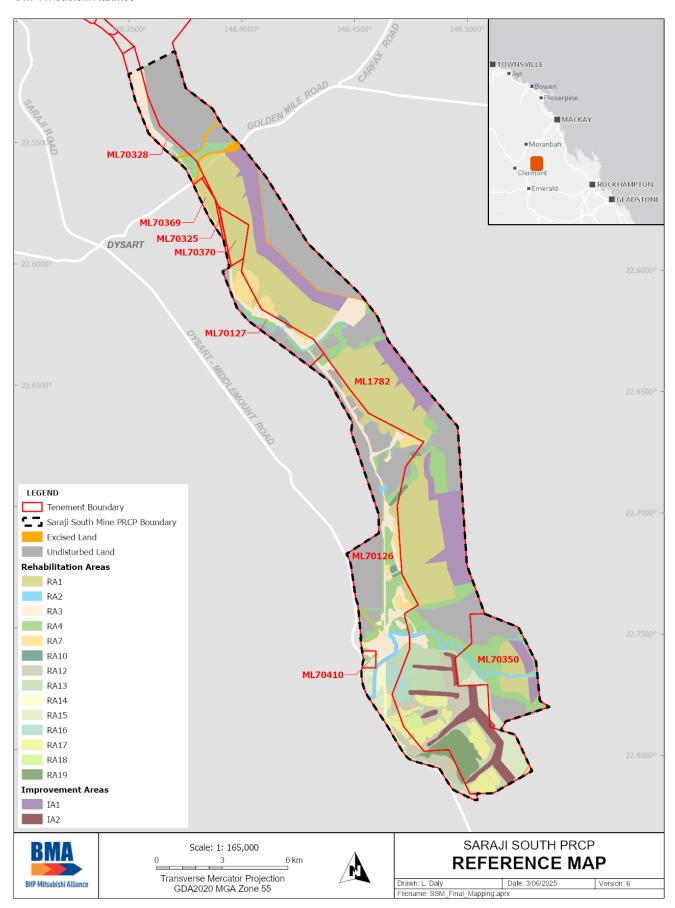


Figure 28: SSM reference map

10.3 Schedule Conditions

Refer to the approved SSM PRCP schedule for conditions (Section A - Conditions of PRCP schedule).

10.4 Rehabilitation milestones

The milestone criteria for SSM, as per the PRCP schedule approved by the administering authority with amendments (29 August 2025), are shown in Table 80. The PRC plan table number is referenced for the PRCP schedule Appendix tables that are directly sourced from the PRC plan, refer to the approved SSM PRCP schedule for the other Appendix tables.

The PRCP schedule includes additional erosion milestone criteria enforced by the administering authority, requiring tunnel erosion to be absent on cattle grazing and watercourse PMLUs. As communicated to the administering authority during the Information and Decision Stages, it remains BMA's position that:

- The BMA proposed erosion criteria, which utilises an AQP to enable a holistic assessment, will achieve a stable condition; and
- The criteria enforced by the administering authority, requiring tunnel erosion to be absent on cattle grazing and watercourse PMLUs, is not justified or achievable considering tunnel erosion is common throughout the Bowen Basin

Given the administrating authority would not accept the erosion criteria proposed, BMA discussed the inclusion of condition PRCP21 in the SSM PRCP schedule. This condition underpins BMA's commitment to develop site-specific criteria to support a PRCP amendment to update the milestone criteria for erosion management.

Table 80: SSM rehabilitation milestones and milestone criteria

Milestone reference	Rehabilitation milestone	Milestone criteria																	
RM1	Infrastructure decommissioning	1.1 All infrastructure to be retained on-site must be safe, stable and not cause environmental harm.																	
	and removal	1.2 All infrastructure and services to be retained on-site must have a signed landholder statement, declaring that they will accept responsibility for the infrastructure (except for those items in 1.3).																	
		1.3 Below-ground infrastructure, services and waste (as per the Environmental Authority (EPML00865013) waste schedule) deeper than 0.5m in relation to the final landform surface can be retained provided it can meet the following:																	
								a) All pipelines have been drained											
									b) All below-ground infrastructure (installed after the approval date of this transitional PRCP) to be retained must be mapped										
					c) The intended PMLU is not compromised.														
					1.4 With the exception of 1.2 and 1.3 above, the following are complete:														
																	a) All services disconnected, terminated and removed		
																			b) All buildings and associated infrastructure dismantled and removed
																			c) All hardstand, concrete areas and roads (bitumen, blue metal, aggregate) removed
		d) All pipelines drained and removed																	
		e) All waste, not authorised under the Environmental Authority (EPML00865013) waste schedule, removed																	
		f) All surface water drainage infrastructure removed																	
		g) All drillholes, bores, sediment ponds and sumps decommissioned																	

Milestone reference	Rehabilitation milestone	Milestone criteria
		h) All machinery and equipment not required for rehabilitation works removed from site
		i) Mine water dams are decommissioned
		j) Watercourse crossings and culverts removed.
		1.5 Assessment of mine water dams to be retained post closure is completed by an AQP¹ and identified sediment and water management actions are completed to ensure the dams are safe and stable for post mine use are completed.
		¹ Appropriately qualified person (AQP) means a person who has professional qualifications, training, skills or experience relevant to the nominated subject matter and can give authoritative assessment, advice and analysis on performance relating to the subject matter using the relevant protocols, standards, methods or literature
RM2	Remediation and/or management of contaminated	2.1 Contaminated Land Investigation Document completed in accordance with the <i>Environmental Protection Act 1994</i> (Qld), including a site investigation report, and, where required, a Validation Report and/or a draft Site Management Plan.
	land	2.2 The Contaminated Land Investigation Document confirms the area within the mining leases (ML1782, ML70126, ML70127, ML70325, ML70328, ML70350, ML70369, ML70370, ML70410) does not present an unacceptable risk to the post-mining land use.
		2.3 Despite 2.1 and 2.2, where contaminated land investigations are undertaken for individual areas of progressive rehabilitation that do not cover an entire Lot on Plan, the investigations will be undertaken by a Suitably Qualified Person to a standard, that at the time of investigation, would be suitable to form part of a future <i>Environmental Protection Act</i> 1994 compliant Contaminated Land Investigation Document for that property, and does not need to achieve all requirements for a contaminated land submission to the administering authority.
RM3	Landform	All rehabilitation areas
	development and reshaping	3.1 Erosion and sediment control systems are designed by an AQP ¹ , installed, and fit for purpose.
		3.2 Appropriate mitigative measures in place for outer landform slopes that interact with flood waters up to a 0.1% AEP, as modelled on the closure landform, and designed by an AQP¹ to minimise potential instability of the landforms from interaction with floodwaters.
		3.3 The reshaped landforms are geotechnically stable with RA1, RA12, RA13, RA16 achieving FoS ≥1.5.
		Cattle grazing 3.4 Landforms RA3, RA13, RA14 are reshaped: ≤12%.
		Grassland (RA16) – Installation of cover
		3.5 An AQP¹ to determine appropriate detailed cover design for installation based on geochemical and geotechnical characterisation of Roper TSF area, which at minimum achieves the following:
		a) Tailings and rejects to be capped with at least 2m of competent benign spoil;

Milestone reference	Rehabilitation milestone	Milestone criteria
		 b) Reduces risk of upward movement of contaminants into the topsoil layer above the cover and reduce risk of environmental harm from contaminated seepage; c) Landforms are reshaped with slopes ≤30%; d) >15% slopes to be covered with minimum 0.5m rock, unless an alternative is justified by an AQP¹; and e) Landform surface to be free-draining.
		3.6 An independent AQP¹ to endorse installation of the cover system as per 3.5.
		Woodland habitat
		3.7 Landforms reshaped with:
		 a) RA1, RA12: ≤30% slopes, with >15% slopes covered with minimum 0.5m rock b) RA1, RA12: Runoff to be restricted from the top of the landform onto the batter slopes if required using appropriate measures of erosion control as advised and designed by an AQP¹. c) RA4, RA15: ≤15% slopes.
		Watercourses (RA2)
		3.8 Disturbed natural watercourse bed and banks returned to a profile similar to the pre-disturbance condition.
		Retained water structure
		3.9 Water storages are safe for stock access and have vegetated banks.
RM4	Surface preparation (cattle	4.1 Topsoil placed at minimum depth of 150mm in areas where topsoil has previously been removed.
	grazing and grassland)	4.2 Assessment of growth media characteristics is completed by an AQP¹:
		 a) To target land suitability class ≤3 as per PRCP schedule Appendix 6: Regional land suitability framework for beef cattle grazing PMLU rehabilitation in the Bowen Basin (Short, 2025) (Table 25) (RA3, RA13, RA14); and
		b) For target vegetation establishment suitable for designated PMLU (RA16).
		4.3 Ameliorant and physical treatments are applied as identified in criteria 4.2.
		4.4 Rip at least 300mm into soil/subsoil profile along contour of slopes.
RM5	Surface preparation (woodland	5.1 Topsoil placed at minimum depth of 100mm or alternative growth media at minimum depth of 300mm, in areas where topsoil has previously been removed.
	habitat)	5.2 Assessment of growth media characteristics is completed by an AQP¹ for target vegetation establishment suitable for designated PMLU.
		5.3 Ameliorant and physical treatments are applied as identified in criteria 5.2.
		5.4 Rip at least 300mm into soil/subsoil profile along contour of slopes.

Milestone reference	Rehabilitation milestone	Milestone criteria
RM6	Surface preparation	6.1 Topsoil placed at minimum depth of 150mm in areas where topsoil has previously been removed.
	(watercourse)	6.2 Assessment of growth media characteristics is completed by an AQP¹ for target vegetation establishment suitable for designated PMLU.
		6.3 Ameliorant and physical treatments are applied as identified in criteria 6.2.
		6.4 Rip at least 300mm into soil/subsoil profile along contour of slopes.
RM7	Revegetation (cattle grazing and grassland)	7.1 Completed seeding in accordance with PRCP schedule Appendix 1: Recommended species list and seeding rates for cattle grazing and grassland PMLUs (Table 40).
		7.2 For cattle grazing PMLU, at least four species of 3P grasses and two species of legumes from PRCP schedule Appendix 1: Recommended species list and seeding rates for cattle grazing and grassland PMLUs (Table 40).
		7.3 Stock exclusion has been established to prevent stock from grassland PMLU (RA16).
RM8	Revegetation (woodland habitat)	8.1 Completed seeding in accordance with PRCP schedule Appendix 2: Recommended species list and seeding rates for woodland habitat PMLU (Table 42) (RA1, RA10, RA12, RA18) ² , or as recommended by an AQP¹ where vegetation is targeting a specific regional ecosystem (RA4, RA15) ³ .
		² If recommended species are not available, substitute with species from RE 11.4.2, RE 11.4.13, RE 11.5.2, RE 11.5.3 and RE 11.10.7.
		³ Seed application may not be required in all RA4 and RA15 areas.
RM9	Revegetation (watercourse)	9.1 Completed seeding in accordance with PRCP schedule Appendix 3: Recommended species list and seeding rates for watercourse PMLU – upper and mid banks (Table 43) and PRCP schedule Appendix 4: Recommended species list and seeding rates for watercourse revegetation PMLU – lower banks (Table 44).
		9.2 Species chosen for seeding in 9.1 reflects riparian vegetation.
RM10	Achievement of surface requirements (cattle grazing)	10.1 >50% vegetation groundcover (RA7, RA17), of which ≥50% of dry matter yield is 3P pasture species as listed in PRCP schedule Appendix 1: Recommended species list and seeding rates for cattle grazing and grassland PMLUs (Table 40) (RA3, RA13, RA14).
		10.2 With respect to erosion in rehabilitated landforms:
		 a) All erosion inclusive of tunnel erosion as per PRCP schedule Appendix 8: Erosion classification framework is assessed by an AQP¹ and repaired if assessed as requiring intervention to ensure the stable PMLU achieved, and evidence that it is repaired as per AQP¹ advice; and b) Mass movement and tunnel erosion are absent#.
		10.3 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so,

[#] The requirement for 'tunnel erosion' to be absent for cattle grazing and watercourse PMLUs was enforced by the administrating authority when approving the PRCP schedule.

Milestone reference	Rehabilitation milestone	Milestone criteria					
		and the results are not significantly different to upstream values for pH, EC, turbidity.					
RM11	Achievement of surface requirements (woodland habitat)	 11.1 Groundcover⁴: a) >15% slopes must achieve ≥80% groundcover b) ≤15% slopes must achieve ≥50% groundcover. 11.2 Vegetation meets the following (RA10, RA18): a) Species richness: i. ≥2 native trees; ii. ≥3 native shrubs; and iii. ≥4 grass species (native or exotic). 11.3 BioCondition score of ≥18/60 based on the benchmarks for the representative regional ecosystems as listed in PRCP schedule Appendix 7: BioCondition benchmarks and scoring of site-based attributes for representative regional ecosystems (Table 70) and as assessed by an AQP¹ using the modified 'BioCondition Assessment Manual' (version 2.2) methodology (RA1, RA4, RA12, RA15). 11.4 With respect to erosion in rehabilitated landforms: a) All erosion inclusive of tunnel erosion as per PRCP schedule 					
		Appendix 8: Erosion classification framework is assessed by AQP¹ and repaired if assessed as requiring intervention to ensure the stable PMLU achieved, and evidence that it is repaired as per AQP¹ advice; and b) Mass movement is absent. 11.5 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so and the results are not significantly different to upstream values for p EC, turbidity. 4 Groundcover: anything in contact with the soil surface, for example, live constanding dry cover, organic litter (including leaves, hay, woody debris) or roce					
RM12	Achievement of surface requirements (watercourse)	 12.1 Groundcover⁴: a) >15% slopes must achieve ≥80% groundcover. b) ≤15% slopes must achieve ≥50% groundcover. 12.2 Geomorphic index score: greater than or equal to upstream or downstream values (Index of Diversion Condition method⁵). 12.3 Vegetation meets the following: a) Species richness: I. ≥2 native trees; II. ≥2 native shrubs representative of riparian vegetation RE 11.3.25; and III. ≥2 grasses (native or exotic). 12.4 With respect to erosion in rehabilitated landforms: 					
		a) All erosion inclusive of tunnel erosion as per PRCP schedule Appendix 8: Erosion classification framework is assessed by an AQP¹ and repaired if assessed as requiring intervention to ensure the stable PMLU achieved and evidence that it is repaired as per AQP¹ advice; and					

Milestone reference	Rehabilitation milestone	Milestone criteria		
		b) Mass movement and tunnel erosion are absent [#] .		
		⁵ For watercourse rehabilitation not within a diversion (i.e. crossings/culverts), a modified IDC method with a reduced number of monitoring points within each reach will be used.		
RM13	Achievement of post-mining land use to a stable	13.1 Hazard assessment completed by an AQP¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.		
	condition (cattle grazing – RA3,	13.2 Rehabilitation is assessed as geotechnically stable by an AQP¹ with FoS ≥1.5 (RA13).		
	RA13, RA14)	13.3 With respect to erosion in rehabilitated landforms:		
		a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework; and		
		b) Mass movement and tunnel erosion are absent#; and		
		c) An AQP¹ determines that any erosion present will not compromise the achievement of a PMLU to a stable condition.		
		13.4 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so, and the results are not significantly different to upstream values for pH, EC, turbidity.		
		13.5 Final landform survey confirms no built infrastructure remains other than those that form part of landholder agreement and meets exception as per 1.3.		
		13.6 Groundcover: >50% vegetation groundcover, of which ≥50% of dry matter yield is 3P pasture species as listed in PRCP schedule Appendix 1: Recommended species list and seeding rates for cattle grazing and grassland PMLUs (Table 40).		
				13.7 Achievement of land suitability class ≤3 as per PRCP schedule Appendix 6: Regional land suitability framework for beef cattle grazing PMLU rehabilitation in the Bowen Basin (Short, 2025) (Table 25), or ≥4 if not different from pre-mining class.
		13.8 Leucaena leucocephala plants >2m high do not exceed stem density of 250 stems per hectare (1 per 40m²) mean of total area.		
		13.9 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.		
		Retained infrastructure/ Water storage		
		13.10 Infrastructure to be transitioned to a future landholder is deemed fit for purpose, safe and stable by AQP¹ and accepted, by signed agreement with the future landholder.		
		13.11 All retained dams are safe, stable for native animals and stock access and have vegetated banks.		

Version 3.0 (26 September 2025)

[#] The requirement for 'tunnel erosion' to be absent for cattle grazing and watercourse PMLUs was enforced by the administrating authority when approving the PRCP schedule.

Milestone reference	Rehabilitation milestone	Milestone criteria						
		13.12 Water storages monitored for water quality annually must meet ANZECC 2000 stock water guideline values, for a minimum of 5 consecutive years.						
RM14	Achievement of post-mining land use to a stable	14.1 Hazard assessment completed by an AQP¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.						
	condition (woodland habitat	14.2 Rehabilitation is assessed as geotechnically stable by an AQP¹ with FoS ≥1.5 (RA1, RA12).						
	– RA1, RA4, RA12, RA15)	14.3 With respect to erosion in rehabilitated landforms:						
	10(12, 10(13)	 a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework; and 						
		b) Mass movement is absent; and						
		 c) An AQP¹ determines that any erosion including tunnel erosion if present will not compromise the achievement of a PMLU to a stable condition. 						
								14.4 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so, and the results are not significantly different to upstream values for pH, EC, turbidity.
		14.5 Final landform survey confirms no built infrastructure remains other than those that form part of landholder agreement and meets exception as per 1.3.						
		14.6 Groundcover ⁴ :						
		a) >15% slopes: ≥80% groundcover						
		b) ≤15% slopes: ≥50% groundcover.						
						14.7 BioCondition score of ≥35/60 based on the benchmarks for the representative regional ecosystems as listed in PRCP schedule Appendix 7: BioCondition benchmarks and scoring of site-based attributes for representative regional ecosystems (Table 70) and as assessed by an AQP¹ using the modified 'BioCondition Assessment Manual' (version 2.2) methodology.		
		14.8 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.						
RM15	Achievement of post-mining land use to a stable	15.1 Hazard assessment completed by an AQP ¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.						
	condition (watercourse –	15.2 With respect to erosion in rehabilitated landforms:						
	RA2)	a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework; and						
		b) Mass movement and tunnel erosion are absent#; and						

Version 3.0 (26 September 2025)

[#] The requirement for 'tunnel erosion' to be absent for cattle grazing and watercourse PMLUs was enforced by the administrating authority when approving the PRCP schedule.

Milestone reference	Rehabilitation milestone	Milestone criteria							
		 c) An AQP¹ determines that any erosion present will not compromise the achievement of a PMLU to a stable condition. 							
		15.3 Final landform survey confirms no built infrastructure remains other than those that form part of landholder agreement and meets exception as per 1.3.							
		15.4 Geomorphic index score: greater than or equal to upstream or downstream values (Index of Diversion Condition method ⁵).							
		15.5 Watercourse vegetation meets the following:							
		 Riparian vegetation index score: greater than or equal to upstream or downstream values (Index of Diversion Condition method⁴). 							
		b) Species richness:							
		i. ≥2 native trees;							
		ii. ≥2 native shrubs; and							
		iii. ≥2 grass species (native or exotic).							
		c) Tree canopy cover ≥13%.							
		15.6 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.							
		15.7 Diversion has an IDC score >10 as defined in 'Criteria for functioning river landscape units in mining and post-mining landscapes' (ACARP Project number C20017).							
		15.8 AQP¹ must consider the following in closure design determination for diversions being retained in the landform:							
		 a) Incorporate natural features (including geomorphic and vegetation) present at the location of the diversion; 							
		 b) Maintain the pre-existing hydrologic characteristics of surface water for the area in which the watercourse diversion is located; 							
		c) Maintain the hydraulic characteristics of the local watercourses without requiring on-going maintenance;							
		 d) Maintain sediment transport and water quality regimes that allow the diversion to be self-sustaining, while minimising any impacts to upstream and downstream water quality, geomorphology, or vegetation; 							
		e) Maintain equilibrium and functionality in all substrate conditions at the location of the diversion; and							
		f) Geotechnically and erosionally stable.							
RM17	Achievement of post-mining land use to a stable	17.1 Hazard assessment completed by an AQP¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.							
	condition (cattle	17.2 With respect to erosion in rehabilitated landforms:							
	grazing - existing rehabilitation – RA7, RA17)	a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework; and							

Milestone reference	Rehabilitation milestone	Milestone criteria						
		b) Mass movement and tunnel erosion are absent#; and						
		 c) An AQP¹ determines that any erosion present will not compromise the achievement of a PMLU to a stable condition. 						
		17.3 Final landform survey confirms no built infrastructure remains other than those that form part of landholder agreement and meets exception as per 1.3.						
		17.4 Groundcover: >50% vegetation groundcover, of which ≥50% of dry matter yield is 3P pasture species.						
		17.5 Land condition: assessed as Good (A) or Fair (B) condition using PRCP schedule Appendix 5: Grazing Land Management ABCD Land Condition Framework (Table 68).						
		17.6 Leucaena leucocephala plants >2m high do not exceed stem density of 250 stems per hectare (1 per 40m²) mean of total area.						
		17.7 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.						
RM18	Achievement of post-mining land use to a stable	18.1 Hazard assessment completed by an AQP ¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.						
	condition	18.2 With respect to erosion in rehabilitated landforms:						
	(woodland habitat - existing rehabilitation –	a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework;						
	RA10, RA18)	b) Mass movement is absent; and						
		 c) An AQP¹ determines that any erosion including tunnel erosion if present will not compromise the achievement of a PMLU to a stable condition. 						
		18.3 Groundcover ⁴ :						
		a) >15% slopes: ≥80% groundcover,						
		b) ≤15% slopes: ≥50% groundcover.						
		18.4 Woodland habitat vegetation meets the following:						
		a) Species richness:						
		i. ≥2 native trees;						
		ii. ≥3 native shrubs;						
		iii. ≥4 grasses (native or exotic)						
		b) Tree canopy cover: ≥16%.						
		18.5 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.						

Version 3.0 (26 September 2025)

[#] The requirement for 'tunnel erosion' to be absent for cattle grazing and watercourse PMLUs was enforced by the administrating authority when approving the PRCP schedule.

Milestone reference	Rehabilitation milestone	Milestone criteria						
RM19	Achievement of surface requirements (grassland)	 19.1 Groundcover⁴: a) >15% slopes: ≥80% groundcover, b) ≤15% slopes: ≥50% groundcover. c) ≤5% slopes: ≥50% groundcover, consisting of at least 50% vegetation groundcover. 						
		9.2 With respect to erosion in rehabilitated landforms:						
		 a) All erosion inclusive of tunnel erosion as per PRCP schedule Appendix 8: Erosion classification framework is assessed by an AQP¹ and repaired if assessed as requiring intervention to ensure the stable PMLU achieved, and evidence that it is repaired as per AQP¹ advice; and b) Mass movement and tunnel erosion are absent. 						
		19.3 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so, and the results are not significantly different to upstream values for pH, EC, turbidity.						
RM20	Achievement of post-mining land use to a stable	20.1 Hazard assessment completed by an AQP ¹ to confirm safety hazards in rehabilitation are not significantly different to surrounding unmined landscapes subject to the same land use.						
	condition (grassland - RA16)	20.2 Rehabilitation is assessed as geotechnically stable by an AQP¹ with FoS ≥1.5.						
		20.3 With respect to erosion in rehabilitated landforms:						
		a) No evidence of erosion classified as moderate or severe as defined by PRCP schedule Appendix 8: Erosion classification framework; and						
		b) Mass movement and tunnel erosion are absent; and						
		 c) An AQP¹ determines that any erosion present will not compromise the achievement of a PMLU to a stable condition. 						
						20.4 Surface water runoff has been collected across representative areas of rehabilitation when surface flows occur and it is safe to do so, and the results are not significantly different to upstream values for pH, EC, turbidity.		
		20.5 Groundcover ⁴ :						
		a) >15% slopes: ≥80% groundcover,						
		b) ≤15% slopes: ≥50% groundcover,						
		c) ≤5% slopes: ≥50% groundcover, consisting of at least 50% vegetation groundcover.						
		20.6 Vegetation: ≥2 grass species (native or exotic).						
		20.7 Restricted invasive plants (as defined in the <i>Biosecurity Act 2014</i>) comprise ≤5% of vegetation groundcover, with the exception of <i>Parthenium hysterophorus</i> which must not exceed 10% vegetation groundcover and assessed by an AQP¹ as appropriately managed.						

10.5 Management milestones

The management milestones and milestone criteria for SSM are shown in Table 81. Refer to the approved SSM PRCP schedule (Section A - Conditions of PRCP schedule) for the PRCP conditions referenced in Table 81.

Table 81: SSM management milestones and milestone criteria

Milestone Reference	Management milestone	Milestone criteria
MM1	Achievement of	1.1 High-wall landforms must:
	structural stability	a) Prevent surface flow of floodwater into the void
		b) Be geotechnically stable when floodwater is against the creek- side batter
		c) Prevent seepage flow of floodwater into the void
		d) Not be constructed with dispersive material
		e) Have maximum 30% slopes with rock for scour protection.
		1.2 The final design for high-wall landform must be completed by an AQP¹ based on the latest flood modelling and materials data prior to construction.
		1.3 Final residual voids are not subject to inundation from floodwaters up to and including the 0.1% AEP.
		1.4 The high-wall, end-wall and low-wall achieve a FoS ≥1.5 within the NUMA extents as determined by an AQP¹.
		1.5 A minimum distance of 50m is to be designed between the residual void crest and the toe of the safety bund, where against an external perimeter mining lease (ML1782, ML70126, ML70127, ML70325, ML70328, ML70350, ML70369, ML70370, ML70410) boundary or a watercourse.
		1.6 The location of the voids and associated safety bunds does not cause instability or degradation to the land outside of the mining lease (ML1782, ML70126, ML70127, ML70325, ML70328, ML70350, ML70369, ML70370, ML70410) boundary.
		1.7 Low-walls are free-draining into the void lake with a maximum 37 degree slopes.
		1.8 Residual voids must not overtop.
		1.9 Flood mitigation as per MM1.3 have appropriate scour protection to sustain flood velocities.
		1.10 Residual voids collectively act as groundwater sinks within the relevant mining lease (ML1782, ML70126, ML70127, ML70325, ML70328, ML70350, ML70369, ML70370, ML70410) boundary post-closure as demonstrated by groundwater modelling defined in condition PRCP14.
MM2	Achievement of surface requirements	2.1 Competent safety bund or equivalent landform in place around the perimeter of the residual void to prevent access to the residual void, at the geotechnical set-back distance.
		2.2 Fencing erected, where required to prevent access to the residual void, around the perimeter of the safety bund.
		2.3 Warning signage placed along the fence line (nominally one sign every 100m).

Milestone Reference	Management milestone	Milestone criteria
		2.4 A minimum distance of 25m is to be designed between the residual void low-wall crest within the NUMA and the safety bund or equivalent landform in 2.1.
MM3	Achievement of sufficient improvement	 3.1 Certification from an AQP¹ that: a) The residual void is safe to humans and livestock b) Residual voids are monitored for water level annually, in accordance with condition PRCP20 to shown to be on a trajectory to the establishment of a residual void sink, at surrender. c) The water level and quality in the void will not cause environmental harm to the surrounding environment, as demonstrated by residual void water level, groundwater level, quality monitoring and modelling d) Voids retain flood immunity, supported by flood modelling re-run at end of life and calibrated against the final landform e) The high-wall landform has been constructed in accordance with the final design as per 1.2 f) Erosion and sediment control measures have been installed and are operating as per design g) Appropriate safety infrastructure at the geotechnical set-back distance has been installed to prevent access to the NUMA h) The residual void will not present an unacceptable risk of environmental harm outside of the relevant external perimeter mining lease (ML1782, ML70126, ML70127, ML70325, ML70328, ML70350, ML70369, ML70370, ML70410) boundary
		 i) Erosion of the landform within the NUMA area will not negatively impact on the stability of any adjacent rehabilitation areas, or their ability to sustain their PMLU. 3.2 Monitoring and maintenance of exclusion fences and bunds to be carried out to ensure they remain effective.

10.6 Schedule

The SSM PRCP schedule is provided below.

	Post-mining land uses (PMLU)											
Rehabilitation area				RA1								
Relevant activities	Relevant activities						Spoil Dumps					
Total rehabilitation area size (ha	a)						3824					
Commencement of first milesto	ne: RM3						10/12/2024					
PMLU						W	oodland Habi	tat				
Date area is available	10/12/2024	10/12/2029	10/12/2034	10/12/2039	10/12/2044	10/12/2049	10/12/2054	10/12/2059	10/12/2064	10/12/2069		
Cumulative area available (ha)	172	365	557	636	737	855	979	1085	1205	1340		
Milestone completed by	10/12/2029	10/12/2034	10/12/2039	10/12/2044	10/12/2049	10/12/2054	10/12/2059	10/12/2064	10/12/2069	10/12/2074		
Milestone Reference				Cı	umulative are	a achieved (h	ıa)					
RM3	172	365	557	636	737	855	979	1085	1205	1340		
RM5	172	365	557	636	737	855	979	1085	1205	1340		
RM8	172	365	557	636	737	855	979	1085	1205	1340		
RM11			172	365	557	636	737	855	979	1085		
RM14					172	365	557	636	737	855		
Date area is available	10/12/2074	10/12/2079	10/12/2084	10/12/2089	10/12/2094	10/12/2099						
Cumulative area available (ha)	1518	1755	1875	2095	2958	3824						
Milestone completed by	10/12/2079	10/12/2084	10/12/2089	10/12/2094	10/12/2099	10/12/2104	10/12/2109	10/12/2114	10/12/2119	10/12/2124		
Milestone Reference				Cı	umulative are	a achieved (h	ia)					
RM3	1518	1755	1875	2095	2958	3824						
RM5	1518	1755	1875	2095	2958	3824						
RM8	1518	1755	1875	2095	2958	3824						
RM11	1205	1340	1518	1755	1875	2095	2958	3824				
RM14	979	1085	1205	1340	1518	1755	1875	2095	2958	3824		

			Post-m	ining land	uses (PMI	.U)						
Rehabilitation area		RA2										
Relevant activities						Creek Di	versions and	Crossings				
Total rehabilitation area size (ha	a)						261					
Commencement of first milesto	ne: RM1						10/12/2057					
PMLU							Watercourse					
Date area is available	10/12/2057	10/12/2060					10/12/2099	10/12/2102				
Cumulative area available (ha)	180	197					250	261				
Milestone completed by	10/12/2060	10/12/2063	10/12/2070	10/12/2073	10/12/2080	10/12/2083	10/12/2102	10/12/2104	10/12/2112	10/12/2114	10/12/2122	10/12/2124
Milestone Reference					C	umulative are	a achieved (h	na)				
RM1	180	197					250	261				
RM3	180	197					250	261				
RM6	180	197					250	261				
RM9	180	197					250	261				
RM12			180	197					250	261		
RM15					180	197					250	261

Post-mining land uses (PMLU)												
Rehabilitation area		RA3										
Relevant activities				Infras	structure Area	as - MIA, work	cshop, dams,	roads and ger	neral infrastru	ıcture		
Total rehabilitation area size (ha	a)						1070					
Commencement of first milesto	ne: RM1						10/12/2098					
PMLU							Cattle Grazin	3				
Date area is available	10/12/2098	10/12/2101										
Cumulative area available (ha)	717	1070										
Milestone completed by	10/12/2101	10/12/2103	10/12/2111	10/12/2113	10/12/2115	10/12/2121	10/12/2123	10/12/2125	10/12/2128	10/12/2130	10/12/2133	10/12/2138
Milestone Reference					C	umulative are	a achieved (h	na)				
RM1	717	1070										
RM2			598	951		1070						
RM3				598	951		1070					
RM4				598	951		1070					
RM7				598	951		1070					
RM10							598	951			1070	
RM13									598	951		1070

			Post-m	ining land	uses (PMI	.U)						
Rehabilitation area							RA4					
Relevant activities					Roads, creek	corridor areas	s, exploration	and general i	infrastructure	<u> </u>		
Total rehabilitation area size (ha	a)			1549								
Commencement of first milesto	ne: RM1			10/12/2034								
PMLU					Woodland Habitat							
Date area is available	10/12/2034				10/12/2059				10/12/2099			
Cumulative area available (ha)	356				543				1549			
Milestone completed by	10/12/2036	10/12/2039	10/12/2049	10/12/2059	10/12/2076	10/12/2079	10/12/2089	10/12/2099	10/12/2100	10/12/2103	10/12/2113	10/12/2123
Milestone Reference					Cı	umulative are	a achieved (h	na)				
RM1	356				543				1549			
RM3		356				543				1549		
RM5		356				543				1549		
RM8		356				543				1549		
RM11			356				543				1549	
RM14				356				543				1549

			Post-m	nining land	uses (PMI	.U)						
Rehabilitation area							RA7					
Relevant activities						Exist	ing Rehabilit	ation				
Total rehabilitation area size (ha	a)			361								
Commencement of first milesto	ne: RM10				10/12/2024							
PMLU		e: KIVI1U			Cattle Grazing							
Date area is available	10/12/2024											
Cumulative area available (ha)	361											
Milestone completed by	10/12/2034	10/12/2039										
Milestone Reference				Cı	umulative are	a achieved (ł	ıa)					
RM10	361											
RM17		361										

			Post-m	ining land	uses (PML	.U)				
Rehabilitation area							RA10			
Relevant activities						Exist	ing Rehabilit	ation		
Total rehabilitation area size (ha	a)						63			
Commencement of first milesto	ne: RM8						10/12/2024			
PMLU		Woodland Habitat								
Date area is available	10/12/2024									
Cumulative area available (ha)	46	63								
Milestone completed by	10/12/2024	10/12/2026	10/12/2034	10/12/2036	10/12/2044	10/12/2046				
Milestone Reference				Cı	umulative are	a achieved (h	na)			
RM8	46	46 63								
RM11			46	63						
RM18		46 63								

			Post-m	ining land	uses (PMI	LU)						
Rehabilitation area							RA12					
Relevant activities						Roper	r area - Spoil [Dumps				
Total rehabilitation area size (ha	a)						557					
Commencement of first milesto	ne: RM2						10/12/2034					
PMLU						W	oodland Habi	tat				
Date area is available	10/12/2034)/12/2034										
Cumulative area available (ha)	557											
Milestone completed by	10/12/2042	10/12/2045	10/12/2052	10/12/2055	10/12/2062	10/12/2065						
Milestone Reference				C	Cumulative area achieved (ha)							
RM2	263	557										
RM3	263	557										
RM5	263	557										
RM8	263	557										
RM11			263	557								
RM14					263	557						

			Post-m	ining land	uses (PMI	LU)					
Rehabilitation area							RA13				
Relevant activities						Ropei	area - Spoil [Dumps			
Total rehabilitation area size (ha	a)						542				
Commencement of first milesto	ne: RM2						10/12/2034				
PMLU							Cattle Grazing	3			
Date area is available	10/12/2034	0/12/2034 10/12/2042									
Cumulative area available (ha)	246	542									
Milestone completed by	10/12/2042	10/12/2045	10/12/2052	10/12/2055	10/12/2055 10/12/2057 10/12/2060						
Milestone Reference				C	Cumulative area achieved (ha)						
RM2	246	542									
RM3	246	542									
RM4	246	542									
RM7	246	246 542									
RM10			246	542							
RM13					246	542					

			Post-m	ining land	uses (PML	.U)					
Rehabilitation area							RA14				
Relevant activities				Roper are	a - Infrastruct	ture Areas - N	lurphy's dam,	haulroad and	d general infr	astructure	
Total rehabilitation area size (ha	a)						90				
Commencement of first milesto	ne: RM1						10/12/2034				
PMLU							Cattle Grazing	3			
Date area is available	10/12/2034										
Cumulative area available (ha)	90										
Milestone completed by	10/12/2037	10/12/2057	10/12/2060	10/12/2070	10/12/2075						
Milestone Reference				Cı	umulative are	a achieved (h	na)				
RM1	90										
RM2		90									
RM3			90								
RM4		90									
RM7			90								
RM10				90	90						
RM13					90						

			Post-m	ining land	uses (PMI	.U)				
Rehabilitation area							RA15			
Relevant activities				Roper	area - Roads,	creek corrido	r areas, explo	ration and ge	eneral infrasti	ructure
Total rehabilitation area size (ha	a)						515			
Commencement of first milesto	ne: RM1						10/12/2034			
PMLU						W	oodland Habi	tat		
Date area is available	10/12/2034	0/12/2034								
Cumulative area available (ha)	515									
Milestone completed by	10/12/2036	10/12/2039	10/12/2049	10/12/2059						
Milestone Reference				C	umulative are	a achieved (ł	na)			
RM1	515									
RM3		515								
RM5		515								
RM8		515								
RM11		515								
RM14				515						

			Post-m	ining land	uses (PML	.U)					
Rehabilitation area							RA16				
Relevant activities					Roper are	a - Tailings St	orage Facility	and Coal Rej	ects Dump		
Total rehabilitation area size (ha	a)						157				
Commencement of first milesto	ne: RM1						10/12/2034				
PMLU							Grassland				
Date area is available	10/12/2034										
Cumulative area available (ha)	157	157									
Milestone completed by	10/12/2037	10/12/2057	10/12/2062	10/12/2072	10/12/2077						
Milestone Reference				Cı	umulative are	a achieved (h	ıa)				
RM1	157										
RM2		157									
RM3			157								
RM4			157								
RM7		157									
RM19				157							
RM20					157						

			Post-m	ining land	uses (PML	.U)				
Rehabilitation area							RA17			
Relevant activities						Roper area	- Existing Rel	nabilitation		
Total rehabilitation area size (ha	a)						483			
Commencement of first milesto	ne: RM10									
PMLU		Cattle Grazing								
Date area is available	10/12/2024									
Cumulative area available (ha)	483									
Milestone completed by	10/12/2034	10/12/2039								
Milestone Reference				C	umulative are	a achieved (h	na)			
RM10	483	483								
RM17		483								

			Post-m	ining land	uses (PMI	.U)				
Rehabilitation area							RA18			
Relevant activities						Roper area	- Existing Rel	nabilitation		
Total rehabilitation area size (ha	a)						43			
Commencement of first milesto	ne: RM8						10/12/2024			
PMLU		Woodland Habitat								
Date area is available	10/12/2024									
Cumulative area available (ha)	43									
Milestone completed by	10/12/2026	10/12/2036	10/12/2046							
Milestone Reference				Cı	umulative are	a achieved (h	a)			
RM8	43	43								
RM11		43								
RM18		43								

			Post-m	ining land	uses (PMI	LU)							
Rehabilitation area							RA19						
Relevant activities						Progressive	ly Certified Re	habilitation					
Total rehabilitation area size (ha	a)						294						
Commencement of first milesto	ne:	Rehabilitation has been progressively certified by DESI											
PMLU		Cattle Grazing											
Date area is available				Cattle Grazing									
Cumulative area available (ha)													
Milestone completed by													
Milestone Reference				C	umulative are	a achieved (ł	na)						

			Non-use n	nanageme	nt area (N	UMA)					
Rehabilitation area							IA1				
Relevant activities							Residual void	S			
Total rehabilitation area size (ha	a)						1481				
Commencement of first milesto	ne: MM1				10/12/2094						
PMLU					NUMA						
Date area is available	10/12/2094										
Cumulative area available (ha)	265	538	655	1481							
Milestone completed by	10/12/2096	10/12/2098	10/12/2100	10/12/2102	10/12/2138						
Milestone Reference				Cı	ımulative are	a achieved (h	ıa)				
MM1	265	265 538 655 1481									
MM2	265	538	655	1481							
MM3		1481									

Non-use management area (NUMA)										
Rehabilitation area				IA2						
Relevant activities				Residual voids						
Total rehabilitation area size (ha)				454						
Commencement of first milestone: MM1				10/12/2098						
PMLU				NUMA						
Date area is available	10/12/2098									
Cumulative area available (ha)	454									
Milestone completed by	10/12/2100	10/12/2138								
Milestone Reference	Cumulative area achieved (ha)									
MM1	454									
MM2	454									
MM3		454								

C: APPENDICES

Appendix A: Saraji South Mine Environmental Authority (EPML00865013) (29 June 2023)

Appendix B: DES (27 May 2021) – Progressive Rehabilitation and Closure Plan Transition Notice. Ref. EPML00865013

Appendix C: BHP (20 May 2021) – Progressive Rehabilitation and Closure Plan BMA NPM - DES Pre-Notification Memo

Appendix D: SLR (2024b) - Saraji South Mine Transitional PRC Plan Hydrogeology

Appendix E: SLR (2024c) – Saraji South Mine Groundwater Modelling Technical Report

Appendix F: Landloch (2023b) – Saraji South Mine Material Characterisation Study

Appendix G: Saraji South Mine Community Consultation Register

Appendix H: SLR (2024a) – Saraji South Mine Transitional PRCP Voids in Floodplain Assessment

Appendix I: WMS (2024) - Saraji South Mine PRCP Rehabilitation Flood Modelling

Appendix J: BHP (2024) – Saraji South Mine PRCP Environmental Geochemical Characterisation and Risk Assessment of Mineral Waste

Appendix K: Landloch (2024) – Erosion and Landform Evolution Simulations to Support Waste Landform Design: Saraji South Mine

Appendix L: Engeny (2024) - Concept Design Report Rolf Creek East

Appendix M: WSP (2024) - Norwich Park Mine Void Closure Plan

Appendix N: Saraji South Mine PRCP Risk Assessment